2025-02-23T18:48:44-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-118682%22&qt=morelikethis&rows=5
2025-02-23T18:48:44-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-118682%22&qt=morelikethis&rows=5
2025-02-23T18:48:44-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T18:48:44-05:00 DEBUG: Deserialized SOLR response
Influence of initial defects on defect formation process in ion doped silicon
We study the influence of initial defects in high-resistance epitaxial silicon layers of high-resistance epitaxial silicon structures on defect formation processes at ion boron doping. The method of reverse voltage-capacitance characteristics revealed two maxima of dopant concentration in epitaxi...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
2009
|
Series: | Semiconductor Physics Quantum Electronics & Optoelectronics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/118682 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the influence of initial defects in high-resistance epitaxial silicon
layers of high-resistance epitaxial silicon structures on defect formation processes at ion
boron doping. The method of reverse voltage-capacitance characteristics revealed two
maxima of dopant concentration in epitaxial silicon layers ion-doped by boron. Studing
the structure of the near-surface area in ion-doped epitaxial silicon by means of modern
methods has shown that in the field of the first concentration maximum (the nearest one
to a wafer surface), the fine-blocked silicon structure is localised. In the range of the
second doping concentration maximum, the grid of dislocations with the variable period
within one grid and consisting of 60° dislocations is found out. In the area of dislocation
grids, oxygen atoms have been found out. The variable period in the grid is related with a
change of mechanical stress and deformation distribution law in the plane of dopant
diffusion front as dependent on the presence of initial defects in silicon. |
---|