Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures

We analyze dynamical systems of general form possessing gradient (symmetric) and Hamiltonian (antisymmetric) flow parts. The relevance of such systems to self-organizing processes is discussed. Coherent structure formation and related gradient flows on matrix Grassmann type manifolds are conside...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2004
Автори: Gafiychuk, V.V., Prykarpatsky, A.K.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2004
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119026
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures / V.V. Gafiychuk, A.K. Prykarpatsky // Condensed Matter Physics. — 2004. — Т. 7, № 3(39). — С. 551–563. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We analyze dynamical systems of general form possessing gradient (symmetric) and Hamiltonian (antisymmetric) flow parts. The relevance of such systems to self-organizing processes is discussed. Coherent structure formation and related gradient flows on matrix Grassmann type manifolds are considered. The corresponding graph model associated with the partition swap neighborhood problem is studied. The criterion for emerging gradient and Hamiltonian flows is established. As an example we consider nonlinear dynamics in a neuron network system described by a simulative vector field. A simple criterion was written in order to establish conditions for the formation of an oscillatory pattern in a model neural system under consideration.