Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures
We analyze dynamical systems of general form possessing gradient (symmetric) and Hamiltonian (antisymmetric) flow parts. The relevance of such systems to self-organizing processes is discussed. Coherent structure formation and related gradient flows on matrix Grassmann type manifolds are conside...
Збережено в:
Дата: | 2004 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2004
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119026 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures / V.V. Gafiychuk, A.K. Prykarpatsky // Condensed Matter Physics. — 2004. — Т. 7, № 3(39). — С. 551–563. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-119026 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1190262017-06-04T03:04:16Z Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures Gafiychuk, V.V. Prykarpatsky, A.K. We analyze dynamical systems of general form possessing gradient (symmetric) and Hamiltonian (antisymmetric) flow parts. The relevance of such systems to self-organizing processes is discussed. Coherent structure formation and related gradient flows on matrix Grassmann type manifolds are considered. The corresponding graph model associated with the partition swap neighborhood problem is studied. The criterion for emerging gradient and Hamiltonian flows is established. As an example we consider nonlinear dynamics in a neuron network system described by a simulative vector field. A simple criterion was written in order to establish conditions for the formation of an oscillatory pattern in a model neural system under consideration. Аналізуються динамічні системи загального виду, векторні поля яких складаються з градієнтної (симетричної) та Гамільтонової (антисиметричної) складових. Дискутується відповідність таких систем процесам самоорганізації. Розглядається виникнення когерентних структур і відповідних градієнтних потоків на грасманових многовидах, а також моделювання таких структур відповідною моделлю графа, який виникає в результаті такого формування. Встановлено критерій виникнення гамільтонових і градієнтних векторних полів. Розглядається модельний приклад нейронної динамічної системи, для якої встановлені умови виникнення осциляційних структур. 2004 Article Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures / V.V. Gafiychuk, A.K. Prykarpatsky // Condensed Matter Physics. — 2004. — Т. 7, № 3(39). — С. 551–563. — Бібліогр.: 20 назв. — англ. 1607-324X PACS: 05.45.-a, 07.05.Mh, 05.65.+b DOI:10.5488/CMP.7.3.551 http://dspace.nbuv.gov.ua/handle/123456789/119026 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We analyze dynamical systems of general form possessing gradient (symmetric)
and Hamiltonian (antisymmetric) flow parts. The relevance of such
systems to self-organizing processes is discussed. Coherent structure formation
and related gradient flows on matrix Grassmann type manifolds are
considered. The corresponding graph model associated with the partition
swap neighborhood problem is studied. The criterion for emerging gradient
and Hamiltonian flows is established. As an example we consider nonlinear
dynamics in a neuron network system described by a simulative vector
field. A simple criterion was written in order to establish conditions for the
formation of an oscillatory pattern in a model neural system under consideration. |
format |
Article |
author |
Gafiychuk, V.V. Prykarpatsky, A.K. |
spellingShingle |
Gafiychuk, V.V. Prykarpatsky, A.K. Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures Condensed Matter Physics |
author_facet |
Gafiychuk, V.V. Prykarpatsky, A.K. |
author_sort |
Gafiychuk, V.V. |
title |
Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures |
title_short |
Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures |
title_full |
Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures |
title_fullStr |
Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures |
title_full_unstemmed |
Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures |
title_sort |
pattern formation in neural dynamical systems governed by mutually hamiltonian and gradient vector field structures |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2004 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/119026 |
citation_txt |
Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures / V.V. Gafiychuk, A.K. Prykarpatsky // Condensed Matter Physics. — 2004. — Т. 7, № 3(39). — С. 551–563. — Бібліогр.: 20 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT gafiychukvv patternformationinneuraldynamicalsystemsgovernedbymutuallyhamiltonianandgradientvectorfieldstructures AT prykarpatskyak patternformationinneuraldynamicalsystemsgovernedbymutuallyhamiltonianandgradientvectorfieldstructures |
first_indexed |
2023-10-18T20:33:37Z |
last_indexed |
2023-10-18T20:33:37Z |
_version_ |
1796150516862943232 |