Simulation of low angle X-ray diffraction on multilayers subjected to diffusion

Calculative method based on the Riccatti type differential equation was tested for simulation of low angle X-ray diffraction patterns from the one-dimensionally ordered multilayer. Some peculiarities of diffraction were revealed connected with asymmetrical distortion of the multilayer profile due to...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2000
Автор: Fedorov, A.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2000
Назва видання:Semiconductor Physics Quantum Electronics & Optoelectronics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121196
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Simulation of low angle X-ray diffraction on multilayers subjected to diffusion / A.G. Fedorov // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2000. — Т. 3, № 4. — С. 554-557. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-121196
record_format dspace
spelling irk-123456789-1211962017-06-14T03:06:52Z Simulation of low angle X-ray diffraction on multilayers subjected to diffusion Fedorov, A.G. Calculative method based on the Riccatti type differential equation was tested for simulation of low angle X-ray diffraction patterns from the one-dimensionally ordered multilayer. Some peculiarities of diffraction were revealed connected with asymmetrical distortion of the multilayer profile due to different processes on the layer boundaries. 2000 Article Simulation of low angle X-ray diffraction on multilayers subjected to diffusion / A.G. Fedorov // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2000. — Т. 3, № 4. — С. 554-557. — Бібліогр.: 6 назв. — англ. 1560-8034 PACS: 61.10.N, 68.65 http://dspace.nbuv.gov.ua/handle/123456789/121196 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Calculative method based on the Riccatti type differential equation was tested for simulation of low angle X-ray diffraction patterns from the one-dimensionally ordered multilayer. Some peculiarities of diffraction were revealed connected with asymmetrical distortion of the multilayer profile due to different processes on the layer boundaries.
format Article
author Fedorov, A.G.
spellingShingle Fedorov, A.G.
Simulation of low angle X-ray diffraction on multilayers subjected to diffusion
Semiconductor Physics Quantum Electronics & Optoelectronics
author_facet Fedorov, A.G.
author_sort Fedorov, A.G.
title Simulation of low angle X-ray diffraction on multilayers subjected to diffusion
title_short Simulation of low angle X-ray diffraction on multilayers subjected to diffusion
title_full Simulation of low angle X-ray diffraction on multilayers subjected to diffusion
title_fullStr Simulation of low angle X-ray diffraction on multilayers subjected to diffusion
title_full_unstemmed Simulation of low angle X-ray diffraction on multilayers subjected to diffusion
title_sort simulation of low angle x-ray diffraction on multilayers subjected to diffusion
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
publishDate 2000
url http://dspace.nbuv.gov.ua/handle/123456789/121196
citation_txt Simulation of low angle X-ray diffraction on multilayers subjected to diffusion / A.G. Fedorov // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2000. — Т. 3, № 4. — С. 554-557. — Бібліогр.: 6 назв. — англ.
series Semiconductor Physics Quantum Electronics & Optoelectronics
work_keys_str_mv AT fedorovag simulationoflowanglexraydiffractiononmultilayerssubjectedtodiffusion
first_indexed 2023-10-18T20:38:53Z
last_indexed 2023-10-18T20:38:53Z
_version_ 1796150747091435520