Теоремы Лиувилля, Пикара и Сохоцкого для кольцевых отображений
Доказано, что изолированная особенность x₀ ∊ D открытого дискретного кольцевого Q-отображения f : D\{x₀} → Rⁿ устранима, если функция Q(x) имеет конечное среднее колебание, либо логарифмические особенности порядка не выше, чем n − 1 в точке x0. Более того, продолженное отображение открыто и дискретн...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2008
|
Назва видання: | Український математичний вісник |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124347 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Теоремы Лиувилля, Пикара и Сохоцкого для кольцевых отображений / Е.А.Севостьянов // Український математичний вісник. — 2008. — Т. 5, № 3. — С. 366-381. — Бібліогр.: 26 назв. — рос. |