Neural network modeling of Herglotz—Wiechert inversion of multiparametric travel-time curves of seismic waves

Using artificial neural networks to solve a problem of plotting travel-time curves of seismic waves can create nonlinear travel-time model of P and S phases of seismic waves arrangement as a function of several arguments: source depth, magnitude, back azimuth and epicenter distance. Construction of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Lazarenko, M., Herasymenko, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут геофізики ім. С.I. Субботіна НАН України 2017
Назва видання:Геофизический журнал
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/125274
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Neural network modeling of Herglotz—Wiechert inversion of multiparametric travel-time curves of seismic waves / M. Lazarenko, O. Herasymenko // Геофизический журнал. — 2017. — Т. 39, № 4. — С. 3-14. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Using artificial neural networks to solve a problem of plotting travel-time curves of seismic waves can create nonlinear travel-time model of P and S phases of seismic waves arrangement as a function of several arguments: source depth, magnitude, back azimuth and epicenter distance. Construction of three-dimensional travel-time relationships and their use for modeling of hadographs and their inversion are considered on examples of seismic records Ukrainian seismic stations. Examples of inversion locus within the model Herglotz—Wiechert and features of application of the model in a real environment for single seismic stations, and generalization for arbitrary coordinate of the source and the point of signal registration in the Black Sea region are given.