Нейронні та мережі Байєса у задачі аналізу кредитних ризиків

Робота присвячена аналізу дефолтів позичальників кредиту фінансової установи з використанням трьох типів математичних моделей і фактичних даних з банківської установи. Представлено результати побудови та практичного застосування моделей у формі нейронної мережі зворотного розповсюдження, статичної б...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Кузнєцова, Н.В., Бідюк, П.І.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут проблем реєстрації інформації НАН України 2015
Назва видання:Реєстрація, зберігання і обробка даних
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/131568
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Нейронні та мережі Байєса у задачі аналізу кредитних ризиків / Н.В. Кузнєцова, П.І. Бідюк // Реєстрація, зберігання і обробка даних. — 2015. — Т. 17, № 2. — С. 61-71. — Бібліогр.: 10 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Робота присвячена аналізу дефолтів позичальників кредиту фінансової установи з використанням трьох типів математичних моделей і фактичних даних з банківської установи. Представлено результати побудови та практичного застосування моделей у формі нейронної мережі зворотного розповсюдження, статичної байєсівської мережі та інтегрованої моделі, яка складається з двох указаних структур. Виконано ряд обчислювальних експериментів стосовно прогнозування дефолтів позичальників кредитів з використанням кожноїпобудованої моделі окремо, а також комбінованої (інтегрованої) моделі. Показано, що кращий результат на використаних вибірках даних забезпечує комбінована модель, і встановлено, що для розв’язання задачі прогнозування дефолтів клієнтів банку доцільно застосовувати множину різних моделей, інтегроване використання яких дає можливість підвищити якість оцінок прогнозів.