Small-time limit behavior of the probability that a Lévy process stays positive
In the paper, we find analytically the upper and lower limits (as the time parameter tends to zero) of the probability that the Lévy process staring at 0 stays positive. We confine ourselves to the situation where the real and imaginary parts of the characteristic function are regularly varying at i...
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2016
|
Назва видання: | Кибернетика и системный анализ |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/133691 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Small-time limit behavior of the probability that a Lévy process stays positive / V.P. Knopova // Кибернетика и системный анализ. — 2016. — Т. 52, № 3. — С. 164-169. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In the paper, we find analytically the upper and lower limits (as the time parameter tends to zero) of the probability that the Lévy process staring at 0 stays positive. We confine ourselves to the situation where the real and imaginary parts of the characteristic function are regularly varying at infinity. In this case, we can calculate the bound, and sometimes the exact values of the respective upper and lower limits. |
---|