Метод построения нечеткой регрессионной модели на основе LARS для выбора значимых признаков
Предложен метод построения нечеткой регрессионной модели на основе LARS. Рассмотрены особенности использования нечеткого регрессионного анализа в задачах медицинской диагностики. Данный метод позволяет сократить число параметров модели, влияющих на прогнозируемую степень обструкции носового дыхания...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2016
|
Назва видання: | Кибернетика и системный анализ |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/142009 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Метод построения нечеткой регрессионной модели на основе LARS для выбора значимых признаков / А.Л. Ерохин, А.С. Бабий, А.С. Нечипоренко, А.П. Турута // Кибернетика и системный анализ. — 2016. — Т. 52, № 4. — С. 167-173. — Бібліогр.: 25 назв. — рос. |