The Structure of Line Bundles over Quantum Teardrops
Over the quantum weighted 1-dimensional complex projective spaces, called quantum teardrops, the quantum line bundles associated with the quantum principal U(1)-bundles introduced and studied by Brzezinski and Fairfax are explicitly identified among the finitely generated projective modules which ar...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146831 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The Structure of Line Bundles over Quantum Teardrops / Albert Jeu-Liang Sheu // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146831 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468312019-02-12T01:25:12Z The Structure of Line Bundles over Quantum Teardrops Albert Jeu-Liang Sheu Over the quantum weighted 1-dimensional complex projective spaces, called quantum teardrops, the quantum line bundles associated with the quantum principal U(1)-bundles introduced and studied by Brzezinski and Fairfax are explicitly identified among the finitely generated projective modules which are classified up to isomorphism. The quantum lens space in which these quantum line bundles are embedded is realized as a concrete groupoid C*-algebra. 2014 Article The Structure of Line Bundles over Quantum Teardrops / Albert Jeu-Liang Sheu // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 28 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 46L85; 58B32 DOI:10.3842/SIGMA.2014.027 http://dspace.nbuv.gov.ua/handle/123456789/146831 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Over the quantum weighted 1-dimensional complex projective spaces, called quantum teardrops, the quantum line bundles associated with the quantum principal U(1)-bundles introduced and studied by Brzezinski and Fairfax are explicitly identified among the finitely generated projective modules which are classified up to isomorphism. The quantum lens space in which these quantum line bundles are embedded is realized as a concrete groupoid C*-algebra. |
format |
Article |
author |
Albert Jeu-Liang Sheu |
spellingShingle |
Albert Jeu-Liang Sheu The Structure of Line Bundles over Quantum Teardrops Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Albert Jeu-Liang Sheu |
author_sort |
Albert Jeu-Liang Sheu |
title |
The Structure of Line Bundles over Quantum Teardrops |
title_short |
The Structure of Line Bundles over Quantum Teardrops |
title_full |
The Structure of Line Bundles over Quantum Teardrops |
title_fullStr |
The Structure of Line Bundles over Quantum Teardrops |
title_full_unstemmed |
The Structure of Line Bundles over Quantum Teardrops |
title_sort |
structure of line bundles over quantum teardrops |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146831 |
citation_txt |
The Structure of Line Bundles over Quantum Teardrops / Albert Jeu-Liang Sheu // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 28 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT albertjeuliangsheu thestructureoflinebundlesoverquantumteardrops AT albertjeuliangsheu structureoflinebundlesoverquantumteardrops |
first_indexed |
2023-05-20T17:25:45Z |
last_indexed |
2023-05-20T17:25:45Z |
_version_ |
1796153271243505664 |