Essential Parabolic Structures and Their Infinitesimal Automorphisms
Using the theory of Weyl structures, we give a natural generalization of the notion of essential conformal structures and conformal Killing fields to arbitrary parabolic geometries. We show that a parabolic structure is inessential whenever the automorphism group acts properly on the base space. As...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146856 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Essential Parabolic Structures and Their Infinitesimal Automorphisms / J. Alt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146856 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468562019-02-12T01:24:11Z Essential Parabolic Structures and Their Infinitesimal Automorphisms Alt, J. Using the theory of Weyl structures, we give a natural generalization of the notion of essential conformal structures and conformal Killing fields to arbitrary parabolic geometries. We show that a parabolic structure is inessential whenever the automorphism group acts properly on the base space. As a corollary of the generalized Ferrand-Obata theorem proved by C. Frances, this proves a generalization of the ''Lichnérowicz conjecture'' for conformal Riemannian, strictly pseudo-convex CR, and quaternionic/octonionic contact manifolds in positive-definite signature. For an infinitesimal automorphism with a singularity, we give a generalization of the dictionary introduced by Frances for conformal Killing fields, which characterizes (local) essentiality via the so-called holonomy associated to a singularity of an infinitesimal automorphism. 2011 Article Essential Parabolic Structures and Their Infinitesimal Automorphisms / J. Alt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 14 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53B05; 53C05; 53C17; 53C24 DOI:10.3842/SIGMA.2011.039 http://dspace.nbuv.gov.ua/handle/123456789/146856 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Using the theory of Weyl structures, we give a natural generalization of the notion of essential conformal structures and conformal Killing fields to arbitrary parabolic geometries. We show that a parabolic structure is inessential whenever the automorphism group acts properly on the base space. As a corollary of the generalized Ferrand-Obata theorem proved by C. Frances, this proves a generalization of the ''Lichnérowicz conjecture'' for conformal Riemannian, strictly pseudo-convex CR, and quaternionic/octonionic contact manifolds in positive-definite signature. For an infinitesimal automorphism with a singularity, we give a generalization of the dictionary introduced by Frances for conformal Killing fields, which characterizes (local) essentiality via the so-called holonomy associated to a singularity of an infinitesimal automorphism. |
format |
Article |
author |
Alt, J. |
spellingShingle |
Alt, J. Essential Parabolic Structures and Their Infinitesimal Automorphisms Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Alt, J. |
author_sort |
Alt, J. |
title |
Essential Parabolic Structures and Their Infinitesimal Automorphisms |
title_short |
Essential Parabolic Structures and Their Infinitesimal Automorphisms |
title_full |
Essential Parabolic Structures and Their Infinitesimal Automorphisms |
title_fullStr |
Essential Parabolic Structures and Their Infinitesimal Automorphisms |
title_full_unstemmed |
Essential Parabolic Structures and Their Infinitesimal Automorphisms |
title_sort |
essential parabolic structures and their infinitesimal automorphisms |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146856 |
citation_txt |
Essential Parabolic Structures and Their Infinitesimal Automorphisms / J. Alt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 14 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT altj essentialparabolicstructuresandtheirinfinitesimalautomorphisms |
first_indexed |
2023-05-20T17:25:52Z |
last_indexed |
2023-05-20T17:25:52Z |
_version_ |
1796153278310907904 |