On Integrable Perturbations of Some Nonholonomic Systems
Integrable perturbations of the nonholonomic Suslov, Veselova, Chaplygin and Heisenberg problems are discussed in the framework of the classical Bertrand-Darboux method. We study the relations between the Bertrand-Darboux type equations, well studied in the holonomic case, with their nonholonomic co...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147151 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Integrable Perturbations of Some Nonholonomic Systems / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 41 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Integrable perturbations of the nonholonomic Suslov, Veselova, Chaplygin and Heisenberg problems are discussed in the framework of the classical Bertrand-Darboux method. We study the relations between the Bertrand-Darboux type equations, well studied in the holonomic case, with their nonholonomic counterparts and apply the results to the construction of nonholonomic integrable potentials from the known potentials in the holonomic case. |
---|