Do All Integrable Evolution Equations Have the Painlevé Property?

We examine whether the Painlevé property is necessary for the integrability of partial differential equations (PDEs). We show that in analogy to what happens in the case of ordinary differential equations (ODEs) there exists a class of PDEs, integrable through linearisation, which do not possess the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Tamizhmani, K.M., Grammaticos, B., Ramani, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147384
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Do All Integrable Evolution Equations Have the Painlevé Property? / K.M. Tamizhmani, B. Grammaticos, A. Ramani // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147384
record_format dspace
spelling irk-123456789-1473842019-02-15T01:24:58Z Do All Integrable Evolution Equations Have the Painlevé Property? Tamizhmani, K.M. Grammaticos, B. Ramani, A. We examine whether the Painlevé property is necessary for the integrability of partial differential equations (PDEs). We show that in analogy to what happens in the case of ordinary differential equations (ODEs) there exists a class of PDEs, integrable through linearisation, which do not possess the Painlevé property. The same question is addressed in a discrete setting where we show that there exist linearisable lattice equations which do not possess the singularity confinement property (again in analogy to the one-dimensional case). 2007 Article Do All Integrable Evolution Equations Have the Painlevé Property? / K.M. Tamizhmani, B. Grammaticos, A. Ramani // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 17 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 34A99; 35A21; 39A12 http://dspace.nbuv.gov.ua/handle/123456789/147384 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We examine whether the Painlevé property is necessary for the integrability of partial differential equations (PDEs). We show that in analogy to what happens in the case of ordinary differential equations (ODEs) there exists a class of PDEs, integrable through linearisation, which do not possess the Painlevé property. The same question is addressed in a discrete setting where we show that there exist linearisable lattice equations which do not possess the singularity confinement property (again in analogy to the one-dimensional case).
format Article
author Tamizhmani, K.M.
Grammaticos, B.
Ramani, A.
spellingShingle Tamizhmani, K.M.
Grammaticos, B.
Ramani, A.
Do All Integrable Evolution Equations Have the Painlevé Property?
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Tamizhmani, K.M.
Grammaticos, B.
Ramani, A.
author_sort Tamizhmani, K.M.
title Do All Integrable Evolution Equations Have the Painlevé Property?
title_short Do All Integrable Evolution Equations Have the Painlevé Property?
title_full Do All Integrable Evolution Equations Have the Painlevé Property?
title_fullStr Do All Integrable Evolution Equations Have the Painlevé Property?
title_full_unstemmed Do All Integrable Evolution Equations Have the Painlevé Property?
title_sort do all integrable evolution equations have the painlevé property?
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147384
citation_txt Do All Integrable Evolution Equations Have the Painlevé Property? / K.M. Tamizhmani, B. Grammaticos, A. Ramani // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 17 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT tamizhmanikm doallintegrableevolutionequationshavethepainleveproperty
AT grammaticosb doallintegrableevolutionequationshavethepainleveproperty
AT ramania doallintegrableevolutionequationshavethepainleveproperty
first_indexed 2023-05-20T17:27:11Z
last_indexed 2023-05-20T17:27:11Z
_version_ 1796153330517409792