The 2-Transitive Transplantable Isospectral Drums
For Riemannian manifolds there are several examples which are isospectral but not isometric, see e.g. J. Milnor [Proc. Nat. Acad. Sci. USA 51 (1964), 542]; in the present paper, we investigate pairs of domains in R² which are isospectral but not congruent. All known such counter examples to M. Kac...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147407 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The 2-Transitive Transplantable Isospectral Drums / J. Schillewaert, K. Thas // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147407 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1474072019-02-15T01:23:38Z The 2-Transitive Transplantable Isospectral Drums Schillewaert, J. Thas, K. For Riemannian manifolds there are several examples which are isospectral but not isometric, see e.g. J. Milnor [Proc. Nat. Acad. Sci. USA 51 (1964), 542]; in the present paper, we investigate pairs of domains in R² which are isospectral but not congruent. All known such counter examples to M. Kac's famous question can be constructed by a certain tiling method (''transplantability'') using special linear operator groups which act 2-transitively on certain associated modules. In this paper we prove that if any operator group acts 2-transitively on the associated module, no new counter examples can occur. In fact, the main result is a corollary of a result on Schreier coset graphs of 2-transitive groups. 2011 Article The 2-Transitive Transplantable Isospectral Drums / J. Schillewaert, K. Thas // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 19 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 20D06; 35J10; 35P05; 37J10; 58J53 DOI: http://dx.doi.org/10.3842/SIGMA.2011.080 http://dspace.nbuv.gov.ua/handle/123456789/147407 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For Riemannian manifolds there are several examples which are isospectral but not isometric, see e.g. J. Milnor [Proc. Nat. Acad. Sci. USA 51 (1964), 542]; in the present paper, we investigate pairs of domains in R² which are isospectral but not congruent. All known such counter examples to M. Kac's famous question can be constructed by a certain tiling method (''transplantability'') using special linear operator groups which act 2-transitively on certain associated modules. In this paper we prove that if any operator group acts 2-transitively on the associated module, no new counter examples can occur. In fact, the main result is a corollary of a result on Schreier coset graphs of 2-transitive groups. |
format |
Article |
author |
Schillewaert, J. Thas, K. |
spellingShingle |
Schillewaert, J. Thas, K. The 2-Transitive Transplantable Isospectral Drums Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Schillewaert, J. Thas, K. |
author_sort |
Schillewaert, J. |
title |
The 2-Transitive Transplantable Isospectral Drums |
title_short |
The 2-Transitive Transplantable Isospectral Drums |
title_full |
The 2-Transitive Transplantable Isospectral Drums |
title_fullStr |
The 2-Transitive Transplantable Isospectral Drums |
title_full_unstemmed |
The 2-Transitive Transplantable Isospectral Drums |
title_sort |
2-transitive transplantable isospectral drums |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147407 |
citation_txt |
The 2-Transitive Transplantable Isospectral Drums / J. Schillewaert, K. Thas // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 19 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT schillewaertj the2transitivetransplantableisospectraldrums AT thask the2transitivetransplantableisospectraldrums AT schillewaertj 2transitivetransplantableisospectraldrums AT thask 2transitivetransplantableisospectraldrums |
first_indexed |
2023-05-20T17:27:38Z |
last_indexed |
2023-05-20T17:27:38Z |
_version_ |
1796153340733685760 |