Lie Algebroids in Classical Mechanics and Optimal Control
We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle.
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147813 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Lie Algebroids in Classical Mechanics and Optimal Control / E. Martínez // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147813 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1478132019-02-17T01:24:45Z Lie Algebroids in Classical Mechanics and Optimal Control Martínez, E. We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle. 2007 Article Lie Algebroids in Classical Mechanics and Optimal Control / E. Martínez // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 25 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 49S05; 70H25; 22A22; 49J15 http://dspace.nbuv.gov.ua/handle/123456789/147813 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle. |
format |
Article |
author |
Martínez, E. |
spellingShingle |
Martínez, E. Lie Algebroids in Classical Mechanics and Optimal Control Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Martínez, E. |
author_sort |
Martínez, E. |
title |
Lie Algebroids in Classical Mechanics and Optimal Control |
title_short |
Lie Algebroids in Classical Mechanics and Optimal Control |
title_full |
Lie Algebroids in Classical Mechanics and Optimal Control |
title_fullStr |
Lie Algebroids in Classical Mechanics and Optimal Control |
title_full_unstemmed |
Lie Algebroids in Classical Mechanics and Optimal Control |
title_sort |
lie algebroids in classical mechanics and optimal control |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147813 |
citation_txt |
Lie Algebroids in Classical Mechanics and Optimal Control / E. Martínez // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 25 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT martineze liealgebroidsinclassicalmechanicsandoptimalcontrol |
first_indexed |
2023-05-20T17:28:15Z |
last_indexed |
2023-05-20T17:28:15Z |
_version_ |
1796153372030533632 |