Phase Space of Rolling Solutions of the Tippe Top

Equations of motion of an axially symmetric sphere rolling and sliding on a plane are usually taken as model of the tippe top. We study these equations in the nonsliding regime both in the vector notation and in the Euler angle variables when they admit three integrals of motion that are linear and...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Glad, S.T., Petersson, D., Rauch-Wojciechowski, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147821
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Phase Space of Rolling Solutions of the Tippe Top / S.T. Glad, D. Petersson, S. Rauch-Wojciechowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Equations of motion of an axially symmetric sphere rolling and sliding on a plane are usually taken as model of the tippe top. We study these equations in the nonsliding regime both in the vector notation and in the Euler angle variables when they admit three integrals of motion that are linear and quadratic in momenta. In the Euler angle variables (θ,φ,ψ) these integrals give separation equations that have the same structure as the equations of the Lagrange top. It makes it possible to describe the whole space of solutions by representing them in the space of parameters (D,λ,E) being constant values of the integrals of motion.