Phase Space of Rolling Solutions of the Tippe Top

Equations of motion of an axially symmetric sphere rolling and sliding on a plane are usually taken as model of the tippe top. We study these equations in the nonsliding regime both in the vector notation and in the Euler angle variables when they admit three integrals of motion that are linear and...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Glad, S.T., Petersson, D., Rauch-Wojciechowski, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147821
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Phase Space of Rolling Solutions of the Tippe Top / S.T. Glad, D. Petersson, S. Rauch-Wojciechowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147821
record_format dspace
spelling irk-123456789-1478212019-02-17T01:23:43Z Phase Space of Rolling Solutions of the Tippe Top Glad, S.T. Petersson, D. Rauch-Wojciechowski, S. Equations of motion of an axially symmetric sphere rolling and sliding on a plane are usually taken as model of the tippe top. We study these equations in the nonsliding regime both in the vector notation and in the Euler angle variables when they admit three integrals of motion that are linear and quadratic in momenta. In the Euler angle variables (θ,φ,ψ) these integrals give separation equations that have the same structure as the equations of the Lagrange top. It makes it possible to describe the whole space of solutions by representing them in the space of parameters (D,λ,E) being constant values of the integrals of motion. 2007 Article Phase Space of Rolling Solutions of the Tippe Top / S.T. Glad, D. Petersson, S. Rauch-Wojciechowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 14 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 70E18; 70E40; 70F25; 70K05 http://dspace.nbuv.gov.ua/handle/123456789/147821 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Equations of motion of an axially symmetric sphere rolling and sliding on a plane are usually taken as model of the tippe top. We study these equations in the nonsliding regime both in the vector notation and in the Euler angle variables when they admit three integrals of motion that are linear and quadratic in momenta. In the Euler angle variables (θ,φ,ψ) these integrals give separation equations that have the same structure as the equations of the Lagrange top. It makes it possible to describe the whole space of solutions by representing them in the space of parameters (D,λ,E) being constant values of the integrals of motion.
format Article
author Glad, S.T.
Petersson, D.
Rauch-Wojciechowski, S.
spellingShingle Glad, S.T.
Petersson, D.
Rauch-Wojciechowski, S.
Phase Space of Rolling Solutions of the Tippe Top
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Glad, S.T.
Petersson, D.
Rauch-Wojciechowski, S.
author_sort Glad, S.T.
title Phase Space of Rolling Solutions of the Tippe Top
title_short Phase Space of Rolling Solutions of the Tippe Top
title_full Phase Space of Rolling Solutions of the Tippe Top
title_fullStr Phase Space of Rolling Solutions of the Tippe Top
title_full_unstemmed Phase Space of Rolling Solutions of the Tippe Top
title_sort phase space of rolling solutions of the tippe top
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147821
citation_txt Phase Space of Rolling Solutions of the Tippe Top / S.T. Glad, D. Petersson, S. Rauch-Wojciechowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 14 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT gladst phasespaceofrollingsolutionsofthetippetop
AT peterssond phasespaceofrollingsolutionsofthetippetop
AT rauchwojciechowskis phasespaceofrollingsolutionsofthetippetop
first_indexed 2023-05-20T17:28:35Z
last_indexed 2023-05-20T17:28:35Z
_version_ 1796153372872540160