Colored Tensor Models - a Review

Colored tensor models have recently burst onto the scene as a promising conceptual and computational tool in the investigation of problems of random geometry in dimension three and higher. We present a snapshot of the cutting edge in this rapidly expanding research field. Colored tensor models have...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Gurau, R., Ryan, J.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148407
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Colored Tensor Models - a Review / R. Gurau, J.P. Ryan // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 130 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148407
record_format dspace
spelling irk-123456789-1484072019-02-19T01:30:04Z Colored Tensor Models - a Review Gurau, R. Ryan, J.P. Colored tensor models have recently burst onto the scene as a promising conceptual and computational tool in the investigation of problems of random geometry in dimension three and higher. We present a snapshot of the cutting edge in this rapidly expanding research field. Colored tensor models have been shown to share many of the properties of their direct ancestor, matrix models, which encode a theory of fluctuating two-dimensional surfaces. These features include the possession of Feynman graphs encoding topological spaces, a 1/N expansion of graph amplitudes, embedded matrix models inside the tensor structure, a resumable leading order with critical behavior and a continuum large volume limit, Schwinger-Dyson equations satisfying a Lie algebra (akin to the Virasoro algebra in two dimensions), non-trivial classical solutions and so on. In this review, we give a detailed introduction of colored tensor models and pointers to current and future research directions. 2012 Article Colored Tensor Models - a Review / R. Gurau, J.P. Ryan // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 130 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 05C15; 05C75; 81Q30; 81T17; 81T18; 83C27; 83C45 DOI: http://dx.doi.org/10.3842/SIGMA.2012.020 http://dspace.nbuv.gov.ua/handle/123456789/148407 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Colored tensor models have recently burst onto the scene as a promising conceptual and computational tool in the investigation of problems of random geometry in dimension three and higher. We present a snapshot of the cutting edge in this rapidly expanding research field. Colored tensor models have been shown to share many of the properties of their direct ancestor, matrix models, which encode a theory of fluctuating two-dimensional surfaces. These features include the possession of Feynman graphs encoding topological spaces, a 1/N expansion of graph amplitudes, embedded matrix models inside the tensor structure, a resumable leading order with critical behavior and a continuum large volume limit, Schwinger-Dyson equations satisfying a Lie algebra (akin to the Virasoro algebra in two dimensions), non-trivial classical solutions and so on. In this review, we give a detailed introduction of colored tensor models and pointers to current and future research directions.
format Article
author Gurau, R.
Ryan, J.P.
spellingShingle Gurau, R.
Ryan, J.P.
Colored Tensor Models - a Review
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Gurau, R.
Ryan, J.P.
author_sort Gurau, R.
title Colored Tensor Models - a Review
title_short Colored Tensor Models - a Review
title_full Colored Tensor Models - a Review
title_fullStr Colored Tensor Models - a Review
title_full_unstemmed Colored Tensor Models - a Review
title_sort colored tensor models - a review
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148407
citation_txt Colored Tensor Models - a Review / R. Gurau, J.P. Ryan // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 130 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT guraur coloredtensormodelsareview
AT ryanjp coloredtensormodelsareview
first_indexed 2023-05-20T17:30:28Z
last_indexed 2023-05-20T17:30:28Z
_version_ 1796153454877474816