Central Configurations and Mutual Differences
Central configurations are solutions of the equations λmjqj=∂U/∂qj, where U denotes the potential function and each qj is a point in the d-dimensional Euclidean space E≅Rd, for j=1,…,n. We show that the vector of the mutual differences qij=qi−qj satisfies the equation −(λ/α)q=Pm(Ψ(q)), where Pm is t...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148595 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Central Configurations and Mutual Differences / D.L. Ferrario // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 17 назв. — англ. |