Central Configurations and Mutual Differences
Central configurations are solutions of the equations λmjqj=∂U/∂qj, where U denotes the potential function and each qj is a point in the d-dimensional Euclidean space E≅Rd, for j=1,…,n. We show that the vector of the mutual differences qij=qi−qj satisfies the equation −(λ/α)q=Pm(Ψ(q)), where Pm is t...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148595 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Central Configurations and Mutual Differences / D.L. Ferrario // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148595 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1485952019-02-19T01:26:11Z Central Configurations and Mutual Differences Ferrario, D.L. Central configurations are solutions of the equations λmjqj=∂U/∂qj, where U denotes the potential function and each qj is a point in the d-dimensional Euclidean space E≅Rd, for j=1,…,n. We show that the vector of the mutual differences qij=qi−qj satisfies the equation −(λ/α)q=Pm(Ψ(q)), where Pm is the orthogonal projection over the spaces of 1-cocycles and Ψ(q)=q/|q|α+2. It is shown that differences qij of central configurations are critical points of an analogue of U, defined on the space of 1-cochains in the Euclidean space E, and restricted to the subspace of 1-cocycles. Some generalizations of well known facts follow almost immediately from this approach. 2017 Article Central Configurations and Mutual Differences / D.L. Ferrario // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 17 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37C25; 70F10 DOI:10.3842/SIGMA.2017.021 http://dspace.nbuv.gov.ua/handle/123456789/148595 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Central configurations are solutions of the equations λmjqj=∂U/∂qj, where U denotes the potential function and each qj is a point in the d-dimensional Euclidean space E≅Rd, for j=1,…,n. We show that the vector of the mutual differences qij=qi−qj satisfies the equation −(λ/α)q=Pm(Ψ(q)), where Pm is the orthogonal projection over the spaces of 1-cocycles and Ψ(q)=q/|q|α+2. It is shown that differences qij of central configurations are critical points of an analogue of U, defined on the space of 1-cochains in the Euclidean space E, and restricted to the subspace of 1-cocycles. Some generalizations of well known facts follow almost immediately from this approach. |
format |
Article |
author |
Ferrario, D.L. |
spellingShingle |
Ferrario, D.L. Central Configurations and Mutual Differences Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Ferrario, D.L. |
author_sort |
Ferrario, D.L. |
title |
Central Configurations and Mutual Differences |
title_short |
Central Configurations and Mutual Differences |
title_full |
Central Configurations and Mutual Differences |
title_fullStr |
Central Configurations and Mutual Differences |
title_full_unstemmed |
Central Configurations and Mutual Differences |
title_sort |
central configurations and mutual differences |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148595 |
citation_txt |
Central Configurations and Mutual Differences / D.L. Ferrario // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 17 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT ferrariodl centralconfigurationsandmutualdifferences |
first_indexed |
2023-05-20T17:30:12Z |
last_indexed |
2023-05-20T17:30:12Z |
_version_ |
1796153440635715584 |