Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields
Two examples of Diff⁺S¹-invariant closed two-forms obtained from forms on jet bundles, which does not admit equivariant moment maps are presented. The corresponding cohomological obstruction is computed and shown to coincide with a nontrivial Lie algebra cohomology class on H²(X(S¹)).
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149158 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields / R. Ferreiro Pérez, J. Muñoz Masqué // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149158 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491582019-02-20T01:27:29Z Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields Ferreiro Pérez, R. Muñoz Masqué, J. Two examples of Diff⁺S¹-invariant closed two-forms obtained from forms on jet bundles, which does not admit equivariant moment maps are presented. The corresponding cohomological obstruction is computed and shown to coincide with a nontrivial Lie algebra cohomology class on H²(X(S¹)). 2009 Article Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields / R. Ferreiro Pérez, J. Muñoz Masqué // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 58D15; 17B56; 22E65; 53D20; 53D30; 58A20 http://dspace.nbuv.gov.ua/handle/123456789/149158 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Two examples of Diff⁺S¹-invariant closed two-forms obtained from forms on jet bundles, which does not admit equivariant moment maps are presented. The corresponding cohomological obstruction is computed and shown to coincide with a nontrivial Lie algebra cohomology class on H²(X(S¹)). |
format |
Article |
author |
Ferreiro Pérez, R. Muñoz Masqué, J. |
spellingShingle |
Ferreiro Pérez, R. Muñoz Masqué, J. Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Ferreiro Pérez, R. Muñoz Masqué, J. |
author_sort |
Ferreiro Pérez, R. |
title |
Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields |
title_short |
Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields |
title_full |
Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields |
title_fullStr |
Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields |
title_full_unstemmed |
Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields |
title_sort |
non-hamiltonian actions and lie-algebra cohomology of vector fields |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149158 |
citation_txt |
Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields / R. Ferreiro Pérez, J. Muñoz Masqué // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT ferreiroperezr nonhamiltonianactionsandliealgebracohomologyofvectorfields AT munozmasquej nonhamiltonianactionsandliealgebracohomologyofvectorfields |
first_indexed |
2023-05-20T17:32:27Z |
last_indexed |
2023-05-20T17:32:27Z |
_version_ |
1796153526238314496 |