Differential and Functional Identities for the Elliptic Trilogarithm
When written in terms of J-functions, the classical Frobenius-Stickelberger pseudo-addition formula takes a very simple form. Generalizations of this functional identity are studied, where the functions involved are derivatives (including derivatives with respect to the modular parameter) of the ell...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149173 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Differential and Functional Identities for the Elliptic Trilogarithm / Ian A.B. Strachan // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149173 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491732019-02-20T01:26:58Z Differential and Functional Identities for the Elliptic Trilogarithm Strachan, Ian A.B. When written in terms of J-functions, the classical Frobenius-Stickelberger pseudo-addition formula takes a very simple form. Generalizations of this functional identity are studied, where the functions involved are derivatives (including derivatives with respect to the modular parameter) of the elliptic trilogarithm function introduced by Beilinson and Levin. A differential identity satisfied by this function is also derived. These generalized Frobenius-Stickelberger identities play a fundamental role in the development of elliptic solutions of the Witten-Dijkgraaf-Verlinde-Verlinde equations of associativity, with the simplest case reducing to the above mentioned differential identity. 2009 Article Differential and Functional Identities for the Elliptic Trilogarithm / Ian A.B. Strachan // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 23 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 11F55; 53B50; 53D45 http://dspace.nbuv.gov.ua/handle/123456789/149173 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
When written in terms of J-functions, the classical Frobenius-Stickelberger pseudo-addition formula takes a very simple form. Generalizations of this functional identity are studied, where the functions involved are derivatives (including derivatives with respect to the modular parameter) of the elliptic trilogarithm function introduced by Beilinson and Levin. A differential identity satisfied by this function is also derived. These generalized Frobenius-Stickelberger identities play a fundamental role in the development of elliptic solutions of the Witten-Dijkgraaf-Verlinde-Verlinde equations of associativity, with the simplest case reducing to the above mentioned differential identity. |
format |
Article |
author |
Strachan, Ian A.B. |
spellingShingle |
Strachan, Ian A.B. Differential and Functional Identities for the Elliptic Trilogarithm Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Strachan, Ian A.B. |
author_sort |
Strachan, Ian A.B. |
title |
Differential and Functional Identities for the Elliptic Trilogarithm |
title_short |
Differential and Functional Identities for the Elliptic Trilogarithm |
title_full |
Differential and Functional Identities for the Elliptic Trilogarithm |
title_fullStr |
Differential and Functional Identities for the Elliptic Trilogarithm |
title_full_unstemmed |
Differential and Functional Identities for the Elliptic Trilogarithm |
title_sort |
differential and functional identities for the elliptic trilogarithm |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149173 |
citation_txt |
Differential and Functional Identities for the Elliptic Trilogarithm / Ian A.B. Strachan // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 23 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT strachanianab differentialandfunctionalidentitiesfortheelliptictrilogarithm |
first_indexed |
2023-05-20T17:32:30Z |
last_indexed |
2023-05-20T17:32:30Z |
_version_ |
1796153527823761408 |