On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
We study the real roots of the Yablonskii-Vorob'ev polynomials, which are special polynomials used to represent rational solutions of the second Painlevé equation. It has been conjectured that the number of real roots of the nth Yablonskii-Vorob'ev polynomial equals [(n+1)/2]. We prove thi...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149188 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials / P. Roffelsen // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149188 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491882019-02-20T01:24:42Z On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials Roffelsen, P. We study the real roots of the Yablonskii-Vorob'ev polynomials, which are special polynomials used to represent rational solutions of the second Painlevé equation. It has been conjectured that the number of real roots of the nth Yablonskii-Vorob'ev polynomial equals [(n+1)/2]. We prove this conjecture using an interlacing property between the roots of the Yablonskii-Vorob'ev polynomials. Furthermore we determine precisely the number of negative and the number of positive real roots of the nth Yablonskii-Vorob'ev polynomial. 2012 Article On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials / P. Roffelsen // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 8 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34M55 DOI: http://dx.doi.org/10.3842/SIGMA.2012.099 http://dspace.nbuv.gov.ua/handle/123456789/149188 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We study the real roots of the Yablonskii-Vorob'ev polynomials, which are special polynomials used to represent rational solutions of the second Painlevé equation. It has been conjectured that the number of real roots of the nth Yablonskii-Vorob'ev polynomial equals [(n+1)/2]. We prove this conjecture using an interlacing property between the roots of the Yablonskii-Vorob'ev polynomials. Furthermore we determine precisely the number of negative and the number of positive real roots of the nth Yablonskii-Vorob'ev polynomial. |
format |
Article |
author |
Roffelsen, P. |
spellingShingle |
Roffelsen, P. On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Roffelsen, P. |
author_sort |
Roffelsen, P. |
title |
On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials |
title_short |
On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials |
title_full |
On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials |
title_fullStr |
On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials |
title_full_unstemmed |
On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials |
title_sort |
on the number of real roots of the yablonskii-vorob'ev polynomials |
publisher |
Інститут математики НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149188 |
citation_txt |
On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials / P. Roffelsen // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 8 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT roffelsenp onthenumberofrealrootsoftheyablonskiivorobevpolynomials |
first_indexed |
2023-05-20T17:31:26Z |
last_indexed |
2023-05-20T17:31:26Z |
_version_ |
1796153484890865664 |