The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas

To every Darboux integrable system there is an associated Lie group G which is a fundamental invariant of the system and which we call the Vessiot group. This article shows that solving the Cauchy problem for a Darboux integrable partial differential equation can be reduced to solving an equation of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Anderson, I.M., Fels, M.E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149223
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas / I.M. Anderson, M.E. Fels // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine