On Orbifold Criteria for Symplectic Toric Quotients
We introduce the notion of regular symplectomorphism and graded regular symplectomorphism between singular phase spaces. Our main concern is to exhibit examples of unitary torus representations whose symplectic quotients cannot be graded regularly symplectomorphic to the quotient of a symplectic rep...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2013
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149236 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Orbifold Criteria for Symplectic Toric Quotients / C. Farsi, H-C. Herbig, C. Seaton // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 31 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149236 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492362019-02-20T01:24:00Z On Orbifold Criteria for Symplectic Toric Quotients Farsi, C. Seaton, C. Herbig, H.-C We introduce the notion of regular symplectomorphism and graded regular symplectomorphism between singular phase spaces. Our main concern is to exhibit examples of unitary torus representations whose symplectic quotients cannot be graded regularly symplectomorphic to the quotient of a symplectic representation of a finite group, while the corresponding GIT quotients are smooth. Additionally, we relate the question of simplicialness of a torus representation to Gaussian elimination. 2013 Article On Orbifold Criteria for Symplectic Toric Quotients / C. Farsi, H-C. Herbig, C. Seaton // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D20; 58A40; 13A50; 14L24; 57R18 DOI: http://dx.doi.org/10.3842/SIGMA.2013.032 http://dspace.nbuv.gov.ua/handle/123456789/149236 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We introduce the notion of regular symplectomorphism and graded regular symplectomorphism between singular phase spaces. Our main concern is to exhibit examples of unitary torus representations whose symplectic quotients cannot be graded regularly symplectomorphic to the quotient of a symplectic representation of a finite group, while the corresponding GIT quotients are smooth. Additionally, we relate the question of simplicialness of a torus representation to Gaussian elimination. |
format |
Article |
author |
Farsi, C. Seaton, C. Herbig, H.-C |
spellingShingle |
Farsi, C. Seaton, C. Herbig, H.-C On Orbifold Criteria for Symplectic Toric Quotients Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Farsi, C. Seaton, C. Herbig, H.-C |
author_sort |
Farsi, C. |
title |
On Orbifold Criteria for Symplectic Toric Quotients |
title_short |
On Orbifold Criteria for Symplectic Toric Quotients |
title_full |
On Orbifold Criteria for Symplectic Toric Quotients |
title_fullStr |
On Orbifold Criteria for Symplectic Toric Quotients |
title_full_unstemmed |
On Orbifold Criteria for Symplectic Toric Quotients |
title_sort |
on orbifold criteria for symplectic toric quotients |
publisher |
Інститут математики НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149236 |
citation_txt |
On Orbifold Criteria for Symplectic Toric Quotients / C. Farsi, H-C. Herbig, C. Seaton // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 31 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT farsic onorbifoldcriteriaforsymplectictoricquotients AT seatonc onorbifoldcriteriaforsymplectictoricquotients AT herbighc onorbifoldcriteriaforsymplectictoricquotients |
first_indexed |
2023-05-20T17:32:18Z |
last_indexed |
2023-05-20T17:32:18Z |
_version_ |
1796153516719341568 |