2025-02-23T09:26:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149236%22&qt=morelikethis&rows=5
2025-02-23T09:26:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149236%22&qt=morelikethis&rows=5
2025-02-23T09:26:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T09:26:57-05:00 DEBUG: Deserialized SOLR response
On Orbifold Criteria for Symplectic Toric Quotients
We introduce the notion of regular symplectomorphism and graded regular symplectomorphism between singular phase spaces. Our main concern is to exhibit examples of unitary torus representations whose symplectic quotients cannot be graded regularly symplectomorphic to the quotient of a symplectic rep...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2013
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/149236 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-149236 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492362019-02-20T01:24:00Z On Orbifold Criteria for Symplectic Toric Quotients Farsi, C. Seaton, C. Herbig, H.-C We introduce the notion of regular symplectomorphism and graded regular symplectomorphism between singular phase spaces. Our main concern is to exhibit examples of unitary torus representations whose symplectic quotients cannot be graded regularly symplectomorphic to the quotient of a symplectic representation of a finite group, while the corresponding GIT quotients are smooth. Additionally, we relate the question of simplicialness of a torus representation to Gaussian elimination. 2013 Article On Orbifold Criteria for Symplectic Toric Quotients / C. Farsi, H-C. Herbig, C. Seaton // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D20; 58A40; 13A50; 14L24; 57R18 DOI: http://dx.doi.org/10.3842/SIGMA.2013.032 http://dspace.nbuv.gov.ua/handle/123456789/149236 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We introduce the notion of regular symplectomorphism and graded regular symplectomorphism between singular phase spaces. Our main concern is to exhibit examples of unitary torus representations whose symplectic quotients cannot be graded regularly symplectomorphic to the quotient of a symplectic representation of a finite group, while the corresponding GIT quotients are smooth. Additionally, we relate the question of simplicialness of a torus representation to Gaussian elimination. |
format |
Article |
author |
Farsi, C. Seaton, C. Herbig, H.-C |
spellingShingle |
Farsi, C. Seaton, C. Herbig, H.-C On Orbifold Criteria for Symplectic Toric Quotients Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Farsi, C. Seaton, C. Herbig, H.-C |
author_sort |
Farsi, C. |
title |
On Orbifold Criteria for Symplectic Toric Quotients |
title_short |
On Orbifold Criteria for Symplectic Toric Quotients |
title_full |
On Orbifold Criteria for Symplectic Toric Quotients |
title_fullStr |
On Orbifold Criteria for Symplectic Toric Quotients |
title_full_unstemmed |
On Orbifold Criteria for Symplectic Toric Quotients |
title_sort |
on orbifold criteria for symplectic toric quotients |
publisher |
Інститут математики НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149236 |
citation_txt |
On Orbifold Criteria for Symplectic Toric Quotients / C. Farsi, H-C. Herbig, C. Seaton // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 31 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT farsic onorbifoldcriteriaforsymplectictoricquotients AT seatonc onorbifoldcriteriaforsymplectictoricquotients AT herbighc onorbifoldcriteriaforsymplectictoricquotients |
first_indexed |
2023-05-20T17:32:18Z |
last_indexed |
2023-05-20T17:32:18Z |
_version_ |
1796153516719341568 |