On Orbifold Criteria for Symplectic Toric Quotients

We introduce the notion of regular symplectomorphism and graded regular symplectomorphism between singular phase spaces. Our main concern is to exhibit examples of unitary torus representations whose symplectic quotients cannot be graded regularly symplectomorphic to the quotient of a symplectic rep...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Farsi, C., Seaton, C., Herbig, H.-C
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149236
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Orbifold Criteria for Symplectic Toric Quotients / C. Farsi, H-C. Herbig, C. Seaton // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149236
record_format dspace
spelling irk-123456789-1492362019-02-20T01:24:00Z On Orbifold Criteria for Symplectic Toric Quotients Farsi, C. Seaton, C. Herbig, H.-C We introduce the notion of regular symplectomorphism and graded regular symplectomorphism between singular phase spaces. Our main concern is to exhibit examples of unitary torus representations whose symplectic quotients cannot be graded regularly symplectomorphic to the quotient of a symplectic representation of a finite group, while the corresponding GIT quotients are smooth. Additionally, we relate the question of simplicialness of a torus representation to Gaussian elimination. 2013 Article On Orbifold Criteria for Symplectic Toric Quotients / C. Farsi, H-C. Herbig, C. Seaton // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D20; 58A40; 13A50; 14L24; 57R18 DOI: http://dx.doi.org/10.3842/SIGMA.2013.032 http://dspace.nbuv.gov.ua/handle/123456789/149236 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We introduce the notion of regular symplectomorphism and graded regular symplectomorphism between singular phase spaces. Our main concern is to exhibit examples of unitary torus representations whose symplectic quotients cannot be graded regularly symplectomorphic to the quotient of a symplectic representation of a finite group, while the corresponding GIT quotients are smooth. Additionally, we relate the question of simplicialness of a torus representation to Gaussian elimination.
format Article
author Farsi, C.
Seaton, C.
Herbig, H.-C
spellingShingle Farsi, C.
Seaton, C.
Herbig, H.-C
On Orbifold Criteria for Symplectic Toric Quotients
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Farsi, C.
Seaton, C.
Herbig, H.-C
author_sort Farsi, C.
title On Orbifold Criteria for Symplectic Toric Quotients
title_short On Orbifold Criteria for Symplectic Toric Quotients
title_full On Orbifold Criteria for Symplectic Toric Quotients
title_fullStr On Orbifold Criteria for Symplectic Toric Quotients
title_full_unstemmed On Orbifold Criteria for Symplectic Toric Quotients
title_sort on orbifold criteria for symplectic toric quotients
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149236
citation_txt On Orbifold Criteria for Symplectic Toric Quotients / C. Farsi, H-C. Herbig, C. Seaton // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 31 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT farsic onorbifoldcriteriaforsymplectictoricquotients
AT seatonc onorbifoldcriteriaforsymplectictoricquotients
AT herbighc onorbifoldcriteriaforsymplectictoricquotients
first_indexed 2023-05-20T17:32:18Z
last_indexed 2023-05-20T17:32:18Z
_version_ 1796153516719341568