Imaginary Powers of the Dunkl Harmonic Oscillator
In this paper we continue the study of spectral properties of the Dunkl harmonic oscillator in the context of a finite reflection group on Rd isomorphic to Z₂d. We prove that imaginary powers of this operator are bounded on Lp, 1 < p < ∞, and from L¹ into weak L¹.
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149244 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Imaginary Powers of the Dunkl Harmonic Oscillator / A. Nowak, K. Stempak // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149244 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492442019-02-20T01:26:49Z Imaginary Powers of the Dunkl Harmonic Oscillator Nowak, A. Stempak, K. In this paper we continue the study of spectral properties of the Dunkl harmonic oscillator in the context of a finite reflection group on Rd isomorphic to Z₂d. We prove that imaginary powers of this operator are bounded on Lp, 1 < p < ∞, and from L¹ into weak L¹. 2009 Article Imaginary Powers of the Dunkl Harmonic Oscillator / A. Nowak, K. Stempak // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 15 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 42C10; 42C20 http://dspace.nbuv.gov.ua/handle/123456789/149244 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we continue the study of spectral properties of the Dunkl harmonic oscillator in the context of a finite reflection group on Rd isomorphic to Z₂d. We prove that imaginary powers of this operator are bounded on Lp, 1 < p < ∞, and from L¹ into weak L¹. |
format |
Article |
author |
Nowak, A. Stempak, K. |
spellingShingle |
Nowak, A. Stempak, K. Imaginary Powers of the Dunkl Harmonic Oscillator Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Nowak, A. Stempak, K. |
author_sort |
Nowak, A. |
title |
Imaginary Powers of the Dunkl Harmonic Oscillator |
title_short |
Imaginary Powers of the Dunkl Harmonic Oscillator |
title_full |
Imaginary Powers of the Dunkl Harmonic Oscillator |
title_fullStr |
Imaginary Powers of the Dunkl Harmonic Oscillator |
title_full_unstemmed |
Imaginary Powers of the Dunkl Harmonic Oscillator |
title_sort |
imaginary powers of the dunkl harmonic oscillator |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149244 |
citation_txt |
Imaginary Powers of the Dunkl Harmonic Oscillator / A. Nowak, K. Stempak // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 15 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT nowaka imaginarypowersofthedunklharmonicoscillator AT stempakk imaginarypowersofthedunklharmonicoscillator |
first_indexed |
2023-05-20T17:32:33Z |
last_indexed |
2023-05-20T17:32:33Z |
_version_ |
1796153530770259968 |