A Universal Genus-Two Curve from Siegel Modular Forms

Let p be any point in the moduli space of genus-two curves M2 and K its field of moduli. We provide a universal equation of a genus-two curve Cα,β defined over K(α,β), corresponding to p, where α and β satisfy a quadratic α²+bβ²=c such that b and c are given in terms of ratios of Siegel modular form...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Malmendier, A., Shaska, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149268
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Universal Genus-Two Curve from Siegel Modular Forms / A. Malmendier, T. Shaska // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149268
record_format dspace
spelling irk-123456789-1492682019-02-20T01:23:42Z A Universal Genus-Two Curve from Siegel Modular Forms Malmendier, A. Shaska, T. Let p be any point in the moduli space of genus-two curves M2 and K its field of moduli. We provide a universal equation of a genus-two curve Cα,β defined over K(α,β), corresponding to p, where α and β satisfy a quadratic α²+bβ²=c such that b and c are given in terms of ratios of Siegel modular forms. The curve Cα,β is defined over the field of moduli K if and only if the quadratic has a K-rational point (α,β). We discover some interesting symmetries of the Weierstrass equation of Cα,β. This extends previous work of Mestre and others. 2017 Article A Universal Genus-Two Curve from Siegel Modular Forms / A. Malmendier, T. Shaska // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14H10; 14H45 DOI:10.3842/SIGMA.2017.089 http://dspace.nbuv.gov.ua/handle/123456789/149268 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let p be any point in the moduli space of genus-two curves M2 and K its field of moduli. We provide a universal equation of a genus-two curve Cα,β defined over K(α,β), corresponding to p, where α and β satisfy a quadratic α²+bβ²=c such that b and c are given in terms of ratios of Siegel modular forms. The curve Cα,β is defined over the field of moduli K if and only if the quadratic has a K-rational point (α,β). We discover some interesting symmetries of the Weierstrass equation of Cα,β. This extends previous work of Mestre and others.
format Article
author Malmendier, A.
Shaska, T.
spellingShingle Malmendier, A.
Shaska, T.
A Universal Genus-Two Curve from Siegel Modular Forms
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Malmendier, A.
Shaska, T.
author_sort Malmendier, A.
title A Universal Genus-Two Curve from Siegel Modular Forms
title_short A Universal Genus-Two Curve from Siegel Modular Forms
title_full A Universal Genus-Two Curve from Siegel Modular Forms
title_fullStr A Universal Genus-Two Curve from Siegel Modular Forms
title_full_unstemmed A Universal Genus-Two Curve from Siegel Modular Forms
title_sort universal genus-two curve from siegel modular forms
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/149268
citation_txt A Universal Genus-Two Curve from Siegel Modular Forms / A. Malmendier, T. Shaska // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT malmendiera auniversalgenustwocurvefromsiegelmodularforms
AT shaskat auniversalgenustwocurvefromsiegelmodularforms
AT malmendiera universalgenustwocurvefromsiegelmodularforms
AT shaskat universalgenustwocurvefromsiegelmodularforms
first_indexed 2023-05-20T17:31:43Z
last_indexed 2023-05-20T17:31:43Z
_version_ 1796153494252552192