A Universal Genus-Two Curve from Siegel Modular Forms
Let p be any point in the moduli space of genus-two curves M2 and K its field of moduli. We provide a universal equation of a genus-two curve Cα,β defined over K(α,β), corresponding to p, where α and β satisfy a quadratic α²+bβ²=c such that b and c are given in terms of ratios of Siegel modular form...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149268 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A Universal Genus-Two Curve from Siegel Modular Forms / A. Malmendier, T. Shaska // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149268 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492682019-02-20T01:23:42Z A Universal Genus-Two Curve from Siegel Modular Forms Malmendier, A. Shaska, T. Let p be any point in the moduli space of genus-two curves M2 and K its field of moduli. We provide a universal equation of a genus-two curve Cα,β defined over K(α,β), corresponding to p, where α and β satisfy a quadratic α²+bβ²=c such that b and c are given in terms of ratios of Siegel modular forms. The curve Cα,β is defined over the field of moduli K if and only if the quadratic has a K-rational point (α,β). We discover some interesting symmetries of the Weierstrass equation of Cα,β. This extends previous work of Mestre and others. 2017 Article A Universal Genus-Two Curve from Siegel Modular Forms / A. Malmendier, T. Shaska // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14H10; 14H45 DOI:10.3842/SIGMA.2017.089 http://dspace.nbuv.gov.ua/handle/123456789/149268 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let p be any point in the moduli space of genus-two curves M2 and K its field of moduli. We provide a universal equation of a genus-two curve Cα,β defined over K(α,β), corresponding to p, where α and β satisfy a quadratic α²+bβ²=c such that b and c are given in terms of ratios of Siegel modular forms. The curve Cα,β is defined over the field of moduli K if and only if the quadratic has a K-rational point (α,β). We discover some interesting symmetries of the Weierstrass equation of Cα,β. This extends previous work of Mestre and others. |
format |
Article |
author |
Malmendier, A. Shaska, T. |
spellingShingle |
Malmendier, A. Shaska, T. A Universal Genus-Two Curve from Siegel Modular Forms Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Malmendier, A. Shaska, T. |
author_sort |
Malmendier, A. |
title |
A Universal Genus-Two Curve from Siegel Modular Forms |
title_short |
A Universal Genus-Two Curve from Siegel Modular Forms |
title_full |
A Universal Genus-Two Curve from Siegel Modular Forms |
title_fullStr |
A Universal Genus-Two Curve from Siegel Modular Forms |
title_full_unstemmed |
A Universal Genus-Two Curve from Siegel Modular Forms |
title_sort |
universal genus-two curve from siegel modular forms |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149268 |
citation_txt |
A Universal Genus-Two Curve from Siegel Modular Forms / A. Malmendier, T. Shaska // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT malmendiera auniversalgenustwocurvefromsiegelmodularforms AT shaskat auniversalgenustwocurvefromsiegelmodularforms AT malmendiera universalgenustwocurvefromsiegelmodularforms AT shaskat universalgenustwocurvefromsiegelmodularforms |
first_indexed |
2023-05-20T17:31:43Z |
last_indexed |
2023-05-20T17:31:43Z |
_version_ |
1796153494252552192 |