Levi-Civita's Theorem for Noncommutative Tori

We show how to define Riemannian metrics and connections on a noncommutative torus in such a way that an analogue of Levi-Civita's theorem on the existence and uniqueness of a Riemannian connection holds. The major novelty is that we need to use two different notions of noncommutative vector fi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Rosenberg, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149363
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Levi-Civita's Theorem for Noncommutative Tori / L. Rosenberg // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149363
record_format dspace
spelling irk-123456789-1493632019-02-22T01:23:22Z Levi-Civita's Theorem for Noncommutative Tori Rosenberg, J. We show how to define Riemannian metrics and connections on a noncommutative torus in such a way that an analogue of Levi-Civita's theorem on the existence and uniqueness of a Riemannian connection holds. The major novelty is that we need to use two different notions of noncommutative vector field. Levi-Civita's theorem makes it possible to define Riemannian curvature using the usual formulas. 2013 Article Levi-Civita's Theorem for Noncommutative Tori / L. Rosenberg // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 11 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 46L87; 58B34; 46L08; 46L08 DOI: http://dx.doi.org/10.3842/SIGMA.2013.071 http://dspace.nbuv.gov.ua/handle/123456789/149363 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We show how to define Riemannian metrics and connections on a noncommutative torus in such a way that an analogue of Levi-Civita's theorem on the existence and uniqueness of a Riemannian connection holds. The major novelty is that we need to use two different notions of noncommutative vector field. Levi-Civita's theorem makes it possible to define Riemannian curvature using the usual formulas.
format Article
author Rosenberg, J.
spellingShingle Rosenberg, J.
Levi-Civita's Theorem for Noncommutative Tori
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Rosenberg, J.
author_sort Rosenberg, J.
title Levi-Civita's Theorem for Noncommutative Tori
title_short Levi-Civita's Theorem for Noncommutative Tori
title_full Levi-Civita's Theorem for Noncommutative Tori
title_fullStr Levi-Civita's Theorem for Noncommutative Tori
title_full_unstemmed Levi-Civita's Theorem for Noncommutative Tori
title_sort levi-civita's theorem for noncommutative tori
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149363
citation_txt Levi-Civita's Theorem for Noncommutative Tori / L. Rosenberg // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 11 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT rosenbergj levicivitastheoremfornoncommutativetori
first_indexed 2023-05-20T17:32:49Z
last_indexed 2023-05-20T17:32:49Z
_version_ 1796153537121484800