Levi-Civita's Theorem for Noncommutative Tori
We show how to define Riemannian metrics and connections on a noncommutative torus in such a way that an analogue of Levi-Civita's theorem on the existence and uniqueness of a Riemannian connection holds. The major novelty is that we need to use two different notions of noncommutative vector fi...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2013
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149363 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Levi-Civita's Theorem for Noncommutative Tori / L. Rosenberg // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149363 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1493632019-02-22T01:23:22Z Levi-Civita's Theorem for Noncommutative Tori Rosenberg, J. We show how to define Riemannian metrics and connections on a noncommutative torus in such a way that an analogue of Levi-Civita's theorem on the existence and uniqueness of a Riemannian connection holds. The major novelty is that we need to use two different notions of noncommutative vector field. Levi-Civita's theorem makes it possible to define Riemannian curvature using the usual formulas. 2013 Article Levi-Civita's Theorem for Noncommutative Tori / L. Rosenberg // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 11 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 46L87; 58B34; 46L08; 46L08 DOI: http://dx.doi.org/10.3842/SIGMA.2013.071 http://dspace.nbuv.gov.ua/handle/123456789/149363 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We show how to define Riemannian metrics and connections on a noncommutative torus in such a way that an analogue of Levi-Civita's theorem on the existence and uniqueness of a Riemannian connection holds. The major novelty is that we need to use two different notions of noncommutative vector field. Levi-Civita's theorem makes it possible to define Riemannian curvature using the usual formulas. |
format |
Article |
author |
Rosenberg, J. |
spellingShingle |
Rosenberg, J. Levi-Civita's Theorem for Noncommutative Tori Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Rosenberg, J. |
author_sort |
Rosenberg, J. |
title |
Levi-Civita's Theorem for Noncommutative Tori |
title_short |
Levi-Civita's Theorem for Noncommutative Tori |
title_full |
Levi-Civita's Theorem for Noncommutative Tori |
title_fullStr |
Levi-Civita's Theorem for Noncommutative Tori |
title_full_unstemmed |
Levi-Civita's Theorem for Noncommutative Tori |
title_sort |
levi-civita's theorem for noncommutative tori |
publisher |
Інститут математики НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149363 |
citation_txt |
Levi-Civita's Theorem for Noncommutative Tori / L. Rosenberg // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 11 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT rosenbergj levicivitastheoremfornoncommutativetori |
first_indexed |
2023-05-20T17:32:49Z |
last_indexed |
2023-05-20T17:32:49Z |
_version_ |
1796153537121484800 |