Двовимірна модель навчання у спайкових нейронних мережах з гомеостазом та навчанням з підкріпленням

Cкладність молекулярних механізмів, що підтримують формування пам’яті, заважає побудові простих, але вичерпних моделей для ефективної симуляції великих нейронних мереж. Запропоновано феноменологічну модель правила навчання, що описує силу зв’язку через повільну і швидку змінні. Їх взаємодія дозволяє...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Осауленко, В.М.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України 2017
Назва видання:Системні дослідження та інформаційні технології
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/151168
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Двовимірна модель навчання у спайкових нейронних мережах з гомеостазом та навчанням з підкріпленням / В.М. Осауленко // Системні дослідження та інформаційні технології. — 2017. — № 2. — С. 130-140. — Бібліогр.: 24 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-151168
record_format dspace
spelling irk-123456789-1511682019-04-26T01:25:17Z Двовимірна модель навчання у спайкових нейронних мережах з гомеостазом та навчанням з підкріпленням Осауленко, В.М. Методи аналізу та управління системами в умовах ризику і невизначеності Cкладність молекулярних механізмів, що підтримують формування пам’яті, заважає побудові простих, але вичерпних моделей для ефективної симуляції великих нейронних мереж. Запропоновано феноменологічну модель правила навчання, що описує силу зв’язку через повільну і швидку змінні. Їх взаємодія дозволяє об’єднати навчання без учителя та навчання з підкріпленням. Результати симуляції свідчать про стабільність сили зв’язку завдяки взаємодії двох змінних та швидкій формі гомеостатичної пластичності. Мультиплікативна форма масштабування ваг зберігає патерни пам’яті статистично більш частих стимулів. Подібним чином до підходу допоміжних слідів модель відслідковує нещодавні зміни сили зв’язку між нейронами і дозволяє їх підсилити. Наведено міркування про можливу біологічну інтерпретацію запропонованої моделі, що включає швидке переміщення рецепторів до мембрани і стабілізацію їх у кластери. Сложность молекулярных механизмов, которые поддерживают формирование памяти, затрудняет построение простых, но точных и исчерпывающих моделей для эффективного моделирования больших нейронных сетей. Предложена феноменологическая модель правила обучения, описывающая силу связи нейронов посредством медленной и быстрой переменных. Их взаимодействие позволяет сочетать обучение с подкреплением и обучение без учителя. Результаты показывают стабильность силы связи за счет сочетания двух переменных и быстрой гомеостатической пластичности. Мультипликативный способ масштабирования весов сохраняет паттерны памяти статистически более частых входных сигналов. Схожим образом к подходу дополнительных следов модель отслеживает последние изменения весов и позволяет их усилить. Приведены соображения о возможной биофизической интерпретации модели, которая включает в себя быстрое перемещение рецепторов к мембране и стабилизации их в кластеры. The huge complexity of molecular mechanisms that support memory formation makes it difficult to build simple, but precise and sufficient models for an efficient simulation of large neural networks. In this paper, we propose the phenomenological model of a learning rule that describes the synaptic strength via slow and fast variables. Two variables interact with each other in a bidirectional manner that allows to combine the reward and unsupervised learning. Results show the stability of synaptic strength due to coupling of two variables and fast homeostatic plasticity. The multiplicative approach of synaptic scaling preserves memory patterns of statistically more frequent input signals. Similar to the eligibility traces approach, the model tracks recent synaptic changes and allows to reinforce these changes. Also, we speculate on a possible biophysical interpretation of such a model that includes the fast movement of receptors to the membrane and their stabilization into clusters. 2017 Article Двовимірна модель навчання у спайкових нейронних мережах з гомеостазом та навчанням з підкріпленням / В.М. Осауленко // Системні дослідження та інформаційні технології. — 2017. — № 2. — С. 130-140. — Бібліогр.: 24 назв. — укр. 1681–6048 DOI: https://doi.org/10.20535/SRIT.2308-8893.2017.1.12 http://dspace.nbuv.gov.ua/handle/123456789/151168 004.942 uk Системні дослідження та інформаційні технології Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
topic Методи аналізу та управління системами в умовах ризику і невизначеності
Методи аналізу та управління системами в умовах ризику і невизначеності
spellingShingle Методи аналізу та управління системами в умовах ризику і невизначеності
Методи аналізу та управління системами в умовах ризику і невизначеності
Осауленко, В.М.
Двовимірна модель навчання у спайкових нейронних мережах з гомеостазом та навчанням з підкріпленням
Системні дослідження та інформаційні технології
description Cкладність молекулярних механізмів, що підтримують формування пам’яті, заважає побудові простих, але вичерпних моделей для ефективної симуляції великих нейронних мереж. Запропоновано феноменологічну модель правила навчання, що описує силу зв’язку через повільну і швидку змінні. Їх взаємодія дозволяє об’єднати навчання без учителя та навчання з підкріпленням. Результати симуляції свідчать про стабільність сили зв’язку завдяки взаємодії двох змінних та швидкій формі гомеостатичної пластичності. Мультиплікативна форма масштабування ваг зберігає патерни пам’яті статистично більш частих стимулів. Подібним чином до підходу допоміжних слідів модель відслідковує нещодавні зміни сили зв’язку між нейронами і дозволяє їх підсилити. Наведено міркування про можливу біологічну інтерпретацію запропонованої моделі, що включає швидке переміщення рецепторів до мембрани і стабілізацію їх у кластери.
format Article
author Осауленко, В.М.
author_facet Осауленко, В.М.
author_sort Осауленко, В.М.
title Двовимірна модель навчання у спайкових нейронних мережах з гомеостазом та навчанням з підкріпленням
title_short Двовимірна модель навчання у спайкових нейронних мережах з гомеостазом та навчанням з підкріпленням
title_full Двовимірна модель навчання у спайкових нейронних мережах з гомеостазом та навчанням з підкріпленням
title_fullStr Двовимірна модель навчання у спайкових нейронних мережах з гомеостазом та навчанням з підкріпленням
title_full_unstemmed Двовимірна модель навчання у спайкових нейронних мережах з гомеостазом та навчанням з підкріпленням
title_sort двовимірна модель навчання у спайкових нейронних мережах з гомеостазом та навчанням з підкріпленням
publisher Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
publishDate 2017
topic_facet Методи аналізу та управління системами в умовах ризику і невизначеності
url http://dspace.nbuv.gov.ua/handle/123456789/151168
citation_txt Двовимірна модель навчання у спайкових нейронних мережах з гомеостазом та навчанням з підкріпленням / В.М. Осауленко // Системні дослідження та інформаційні технології. — 2017. — № 2. — С. 130-140. — Бібліогр.: 24 назв. — укр.
series Системні дослідження та інформаційні технології
work_keys_str_mv AT osaulenkovm dvovimírnamodelʹnavčannâuspajkovihnejronnihmerežahzgomeostazomtanavčannâmzpídkríplennâm
first_indexed 2023-05-20T17:36:16Z
last_indexed 2023-05-20T17:36:16Z
_version_ 1796153671146274816