On S-quasinormally embedded subgroups of finite groups

Let G be a finite group. A subgroup A is called:1) S-quasinormal in G if A is permutable with all Sylow subgroups in G 2) S-quasinormally embedded in G if every Sylow subgroup of A is a Sylow subgroup of some S-quasinormal subgroup of G. Let BseG be the subgroup generated by all the subgroups of B w...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Al-Sharo, Kh.A., Shemetkova, O., Xiaolan Yi
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2012
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152183
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On S-quasinormally embedded subgroups of finite groups / Kh.A. Al-Sharo, O. Shemetkova, Xiaolan Yi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 18–25. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152183
record_format dspace
spelling irk-123456789-1521832019-06-09T01:25:09Z On S-quasinormally embedded subgroups of finite groups Al-Sharo, Kh.A. Shemetkova, O. Xiaolan Yi Let G be a finite group. A subgroup A is called:1) S-quasinormal in G if A is permutable with all Sylow subgroups in G 2) S-quasinormally embedded in G if every Sylow subgroup of A is a Sylow subgroup of some S-quasinormal subgroup of G. Let BseG be the subgroup generated by all the subgroups of B which are S-quasinormally embedded in G. A subgroup B is called SE-supplemented in G if there exists a subgroup T such that G = BT and B ∩ T ≤ BseG. The main result of the paper is the following. 2012 Article On S-quasinormally embedded subgroups of finite groups / Kh.A. Al-Sharo, O. Shemetkova, Xiaolan Yi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 18–25. — Бібліогр.: 20 назв. — англ. 1726-3255 2010 Mathematics Subject Classification:20D10, 20D20, 20D25. http://dspace.nbuv.gov.ua/handle/123456789/152183 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let G be a finite group. A subgroup A is called:1) S-quasinormal in G if A is permutable with all Sylow subgroups in G 2) S-quasinormally embedded in G if every Sylow subgroup of A is a Sylow subgroup of some S-quasinormal subgroup of G. Let BseG be the subgroup generated by all the subgroups of B which are S-quasinormally embedded in G. A subgroup B is called SE-supplemented in G if there exists a subgroup T such that G = BT and B ∩ T ≤ BseG. The main result of the paper is the following.
format Article
author Al-Sharo, Kh.A.
Shemetkova, O.
Xiaolan Yi
spellingShingle Al-Sharo, Kh.A.
Shemetkova, O.
Xiaolan Yi
On S-quasinormally embedded subgroups of finite groups
Algebra and Discrete Mathematics
author_facet Al-Sharo, Kh.A.
Shemetkova, O.
Xiaolan Yi
author_sort Al-Sharo, Kh.A.
title On S-quasinormally embedded subgroups of finite groups
title_short On S-quasinormally embedded subgroups of finite groups
title_full On S-quasinormally embedded subgroups of finite groups
title_fullStr On S-quasinormally embedded subgroups of finite groups
title_full_unstemmed On S-quasinormally embedded subgroups of finite groups
title_sort on s-quasinormally embedded subgroups of finite groups
publisher Інститут прикладної математики і механіки НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/152183
citation_txt On S-quasinormally embedded subgroups of finite groups / Kh.A. Al-Sharo, O. Shemetkova, Xiaolan Yi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 18–25. — Бібліогр.: 20 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT alsharokha onsquasinormallyembeddedsubgroupsoffinitegroups
AT shemetkovao onsquasinormallyembeddedsubgroupsoffinitegroups
AT xiaolanyi onsquasinormallyembeddedsubgroupsoffinitegroups
first_indexed 2023-05-20T17:37:40Z
last_indexed 2023-05-20T17:37:40Z
_version_ 1796153723641135104