On S-quasinormally embedded subgroups of finite groups
Let G be a finite group. A subgroup A is called:1) S-quasinormal in G if A is permutable with all Sylow subgroups in G 2) S-quasinormally embedded in G if every Sylow subgroup of A is a Sylow subgroup of some S-quasinormal subgroup of G. Let BseG be the subgroup generated by all the subgroups of B w...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2012
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152183 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On S-quasinormally embedded subgroups of finite groups / Kh.A. Al-Sharo, O. Shemetkova, Xiaolan Yi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 18–25. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152183 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1521832019-06-09T01:25:09Z On S-quasinormally embedded subgroups of finite groups Al-Sharo, Kh.A. Shemetkova, O. Xiaolan Yi Let G be a finite group. A subgroup A is called:1) S-quasinormal in G if A is permutable with all Sylow subgroups in G 2) S-quasinormally embedded in G if every Sylow subgroup of A is a Sylow subgroup of some S-quasinormal subgroup of G. Let BseG be the subgroup generated by all the subgroups of B which are S-quasinormally embedded in G. A subgroup B is called SE-supplemented in G if there exists a subgroup T such that G = BT and B ∩ T ≤ BseG. The main result of the paper is the following. 2012 Article On S-quasinormally embedded subgroups of finite groups / Kh.A. Al-Sharo, O. Shemetkova, Xiaolan Yi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 18–25. — Бібліогр.: 20 назв. — англ. 1726-3255 2010 Mathematics Subject Classification:20D10, 20D20, 20D25. http://dspace.nbuv.gov.ua/handle/123456789/152183 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let G be a finite group. A subgroup A is called:1) S-quasinormal in G if A is permutable with all Sylow subgroups in G 2) S-quasinormally embedded in G if every Sylow subgroup of A is a Sylow subgroup of some S-quasinormal subgroup of G. Let BseG be the subgroup generated by all the subgroups of B which are S-quasinormally embedded in G. A subgroup B is called SE-supplemented in G if there exists a subgroup T such that G = BT and B ∩ T ≤ BseG. The main result of the paper is the following. |
format |
Article |
author |
Al-Sharo, Kh.A. Shemetkova, O. Xiaolan Yi |
spellingShingle |
Al-Sharo, Kh.A. Shemetkova, O. Xiaolan Yi On S-quasinormally embedded subgroups of finite groups Algebra and Discrete Mathematics |
author_facet |
Al-Sharo, Kh.A. Shemetkova, O. Xiaolan Yi |
author_sort |
Al-Sharo, Kh.A. |
title |
On S-quasinormally embedded subgroups of finite groups |
title_short |
On S-quasinormally embedded subgroups of finite groups |
title_full |
On S-quasinormally embedded subgroups of finite groups |
title_fullStr |
On S-quasinormally embedded subgroups of finite groups |
title_full_unstemmed |
On S-quasinormally embedded subgroups of finite groups |
title_sort |
on s-quasinormally embedded subgroups of finite groups |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152183 |
citation_txt |
On S-quasinormally embedded subgroups of finite groups / Kh.A. Al-Sharo, O. Shemetkova, Xiaolan Yi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 18–25. — Бібліогр.: 20 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT alsharokha onsquasinormallyembeddedsubgroupsoffinitegroups AT shemetkovao onsquasinormallyembeddedsubgroupsoffinitegroups AT xiaolanyi onsquasinormallyembeddedsubgroupsoffinitegroups |
first_indexed |
2023-05-20T17:37:40Z |
last_indexed |
2023-05-20T17:37:40Z |
_version_ |
1796153723641135104 |