The upper edge-to-vertex detour number of a graph

For two vertices u and v in a graph G = (V, E), the detour distance D(u, v) is the length of a longest u-v path in G. A u-v path of length D(u, v) is called a u-v detour. For subsets A and B of V, the detour distance D(A, B) is defined as D(A, B) = min{D(x, y): x ∈ A, y ∈ B}. A u-v path of length D(...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Santhakumaran, A.P., Athisayanathan, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2012
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152187
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The upper edge-to-vertex detour number of a graph / A.P. Santhakumaran, S. Athisayanathan // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 128–138. — Бібліогр.: 9 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine