On radical square zero rings

Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Ringel, C.M., Xiong, B.-L.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2012
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152245
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On radical square zero rings / C.M. Ringel, B.-L. Xiong // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 297–306. — Бібліогр.: 4 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine