On radical square zero rings

Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Ringel, C.M., Xiong, B.-L.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2012
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152245
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On radical square zero rings / C.M. Ringel, B.-L. Xiong // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 297–306. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152245
record_format dspace
spelling irk-123456789-1522452019-06-10T01:25:33Z On radical square zero rings Ringel, C.M. Xiong, B.-L. Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modules which have a non-projective module M such that Exti(M, Λ) = 0 for 1 ≤ i ≤ n. 2012 Article On radical square zero rings / C.M. Ringel, B.-L. Xiong // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 297–306. — Бібліогр.: 4 назв. — англ. 1726-3255 2010 MSC:16D90, 16G10; 16G70. http://dspace.nbuv.gov.ua/handle/123456789/152245 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modules which have a non-projective module M such that Exti(M, Λ) = 0 for 1 ≤ i ≤ n.
format Article
author Ringel, C.M.
Xiong, B.-L.
spellingShingle Ringel, C.M.
Xiong, B.-L.
On radical square zero rings
Algebra and Discrete Mathematics
author_facet Ringel, C.M.
Xiong, B.-L.
author_sort Ringel, C.M.
title On radical square zero rings
title_short On radical square zero rings
title_full On radical square zero rings
title_fullStr On radical square zero rings
title_full_unstemmed On radical square zero rings
title_sort on radical square zero rings
publisher Інститут прикладної математики і механіки НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/152245
citation_txt On radical square zero rings / C.M. Ringel, B.-L. Xiong // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 297–306. — Бібліогр.: 4 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT ringelcm onradicalsquarezerorings
AT xiongbl onradicalsquarezerorings
first_indexed 2023-05-20T17:37:50Z
last_indexed 2023-05-20T17:37:50Z
_version_ 1796153730217803776