On radical square zero rings
Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modu...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2012
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152245 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On radical square zero rings / C.M. Ringel, B.-L. Xiong // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 297–306. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152245 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1522452019-06-10T01:25:33Z On radical square zero rings Ringel, C.M. Xiong, B.-L. Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modules which have a non-projective module M such that Exti(M, Λ) = 0 for 1 ≤ i ≤ n. 2012 Article On radical square zero rings / C.M. Ringel, B.-L. Xiong // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 297–306. — Бібліогр.: 4 назв. — англ. 1726-3255 2010 MSC:16D90, 16G10; 16G70. http://dspace.nbuv.gov.ua/handle/123456789/152245 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modules which have a non-projective module M such that Exti(M, Λ) = 0 for 1 ≤ i ≤ n. |
format |
Article |
author |
Ringel, C.M. Xiong, B.-L. |
spellingShingle |
Ringel, C.M. Xiong, B.-L. On radical square zero rings Algebra and Discrete Mathematics |
author_facet |
Ringel, C.M. Xiong, B.-L. |
author_sort |
Ringel, C.M. |
title |
On radical square zero rings |
title_short |
On radical square zero rings |
title_full |
On radical square zero rings |
title_fullStr |
On radical square zero rings |
title_full_unstemmed |
On radical square zero rings |
title_sort |
on radical square zero rings |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152245 |
citation_txt |
On radical square zero rings / C.M. Ringel, B.-L. Xiong // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 297–306. — Бібліогр.: 4 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT ringelcm onradicalsquarezerorings AT xiongbl onradicalsquarezerorings |
first_indexed |
2023-05-20T17:37:50Z |
last_indexed |
2023-05-20T17:37:50Z |
_version_ |
1796153730217803776 |