Associative words in the symmetric group of degree three

Let G be a group. An element w(x, y) of the absolutely free group on free generators x, y is called an associative word in G if the equality w(w(g₁, g₂), g₃)=w(g₁, w(g₂, g₃)) holds for all g₁, g₂ ∈ G. In this paper we determine all associative words in the symmetric group on three letters....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Plonka, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2013
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152265
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Associative words in the symmetric group of degree three / E. Plonka // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 83–95. — Бібліогр.: 9 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine