F–semigroups

A semigroup S is called F- semigroup if there exists a group-congruence ρ on S such that every ρ-class contains a greatest element with respect to the natural partial order ≤S of S (see [8]). This generalizes the concept of F-inverse semigroups introduced by V. Wagner [12] and investigated in [7]. F...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Giraldes, E., Marques-Smith, P., Mitsch, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2007
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152363
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:F–semigroups / E. Giraldes, P. Marques-Smith, H. Mitsch // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 3. — С. 67–85. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A semigroup S is called F- semigroup if there exists a group-congruence ρ on S such that every ρ-class contains a greatest element with respect to the natural partial order ≤S of S (see [8]). This generalizes the concept of F-inverse semigroups introduced by V. Wagner [12] and investigated in [7]. Five different characterizations of general F-semigroups S are given: by means of residuals, by special principal anticones, by properties of the set of idempotents, by the maximal elements in (S,≤S) and finally, an axiomatic one using an additional unary operation. Also F-semigroups in special classes are considered; in particular, inflations of semigroups and strong semilattices of monoids are studied.