Characterization of Chebyshev Numbers
Let Tn(x) be the degree-n Chebyshev polynomial of the first kind. It is known [1,13] that Tp(x)≡xpmodp, when p is an odd prime, and therefore, Tp(a)≡amodp for all a. Our main result is the characterization of composite numbers n satisfying the condition Tn(a)≡amodn, for any integer a. We call these...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2008
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152391 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Characterization of Chebyshev Numbers / D.P. Jacobs, V. Trevisan, M.O. Rayers // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 65–82. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152391 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1523912019-06-19T20:06:43Z Characterization of Chebyshev Numbers Jacobs, D.P. Trevisan, V. Rayers, M.O. Let Tn(x) be the degree-n Chebyshev polynomial of the first kind. It is known [1,13] that Tp(x)≡xpmodp, when p is an odd prime, and therefore, Tp(a)≡amodp for all a. Our main result is the characterization of composite numbers n satisfying the condition Tn(a)≡amodn, for any integer a. We call these pseudoprimes Chebyshev numbers, and show that n is a Chebyshev number if and only if n is odd, squarefree, and for each of its prime divisors p, n≡±1modp−1 and n≡±1modp+1. Like Carmichael numbers, they must be the product of at least three primes. Our computations show there is one Chebyshev number less than 10¹⁰, although it is reasonable to expect there are infinitely many. Our proofs are based on factorization and resultant properties of Chebyshev polynomials. 2008 Article Characterization of Chebyshev Numbers / D.P. Jacobs, V. Trevisan, M.O. Rayers // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 65–82. — Бібліогр.: 17 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:11A07, 11Y35. http://dspace.nbuv.gov.ua/handle/123456789/152391 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let Tn(x) be the degree-n Chebyshev polynomial of the first kind. It is known [1,13] that Tp(x)≡xpmodp, when p is an odd prime, and therefore, Tp(a)≡amodp for all a. Our main result is the characterization of composite numbers n satisfying the condition Tn(a)≡amodn, for any integer a. We call these pseudoprimes Chebyshev numbers, and show that n is a Chebyshev number if and only if n is odd, squarefree, and for each of its prime divisors p, n≡±1modp−1 and n≡±1modp+1. Like Carmichael numbers, they must be the product of at least three primes. Our computations show there is one Chebyshev number less than 10¹⁰, although it is reasonable to expect there are infinitely many. Our proofs are based on factorization and resultant properties of Chebyshev polynomials. |
format |
Article |
author |
Jacobs, D.P. Trevisan, V. Rayers, M.O. |
spellingShingle |
Jacobs, D.P. Trevisan, V. Rayers, M.O. Characterization of Chebyshev Numbers Algebra and Discrete Mathematics |
author_facet |
Jacobs, D.P. Trevisan, V. Rayers, M.O. |
author_sort |
Jacobs, D.P. |
title |
Characterization of Chebyshev Numbers |
title_short |
Characterization of Chebyshev Numbers |
title_full |
Characterization of Chebyshev Numbers |
title_fullStr |
Characterization of Chebyshev Numbers |
title_full_unstemmed |
Characterization of Chebyshev Numbers |
title_sort |
characterization of chebyshev numbers |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152391 |
citation_txt |
Characterization of Chebyshev Numbers / D.P. Jacobs, V. Trevisan, M.O. Rayers // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 65–82. — Бібліогр.: 17 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT jacobsdp characterizationofchebyshevnumbers AT trevisanv characterizationofchebyshevnumbers AT rayersmo characterizationofchebyshevnumbers |
first_indexed |
2023-05-20T17:38:16Z |
last_indexed |
2023-05-20T17:38:16Z |
_version_ |
1796153744915693568 |