Characterization of Chebyshev Numbers

Let Tn(x) be the degree-n Chebyshev polynomial of the first kind. It is known [1,13] that Tp(x)≡xpmodp, when p is an odd prime, and therefore, Tp(a)≡amodp for all a. Our main result is the characterization of composite numbers n satisfying the condition Tn(a)≡amodn, for any integer a. We call these...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Jacobs, D.P., Trevisan, V., Rayers, M.O.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2008
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152391
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Characterization of Chebyshev Numbers / D.P. Jacobs, V. Trevisan, M.O. Rayers // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 65–82. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152391
record_format dspace
spelling irk-123456789-1523912019-06-19T20:06:43Z Characterization of Chebyshev Numbers Jacobs, D.P. Trevisan, V. Rayers, M.O. Let Tn(x) be the degree-n Chebyshev polynomial of the first kind. It is known [1,13] that Tp(x)≡xpmodp, when p is an odd prime, and therefore, Tp(a)≡amodp for all a. Our main result is the characterization of composite numbers n satisfying the condition Tn(a)≡amodn, for any integer a. We call these pseudoprimes Chebyshev numbers, and show that n is a Chebyshev number if and only if n is odd, squarefree, and for each of its prime divisors p, n≡±1modp−1 and n≡±1modp+1. Like Carmichael numbers, they must be the product of at least three primes. Our computations show there is one Chebyshev number less than 10¹⁰, although it is reasonable to expect there are infinitely many. Our proofs are based on factorization and resultant properties of Chebyshev polynomials. 2008 Article Characterization of Chebyshev Numbers / D.P. Jacobs, V. Trevisan, M.O. Rayers // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 65–82. — Бібліогр.: 17 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:11A07, 11Y35. http://dspace.nbuv.gov.ua/handle/123456789/152391 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let Tn(x) be the degree-n Chebyshev polynomial of the first kind. It is known [1,13] that Tp(x)≡xpmodp, when p is an odd prime, and therefore, Tp(a)≡amodp for all a. Our main result is the characterization of composite numbers n satisfying the condition Tn(a)≡amodn, for any integer a. We call these pseudoprimes Chebyshev numbers, and show that n is a Chebyshev number if and only if n is odd, squarefree, and for each of its prime divisors p, n≡±1modp−1 and n≡±1modp+1. Like Carmichael numbers, they must be the product of at least three primes. Our computations show there is one Chebyshev number less than 10¹⁰, although it is reasonable to expect there are infinitely many. Our proofs are based on factorization and resultant properties of Chebyshev polynomials.
format Article
author Jacobs, D.P.
Trevisan, V.
Rayers, M.O.
spellingShingle Jacobs, D.P.
Trevisan, V.
Rayers, M.O.
Characterization of Chebyshev Numbers
Algebra and Discrete Mathematics
author_facet Jacobs, D.P.
Trevisan, V.
Rayers, M.O.
author_sort Jacobs, D.P.
title Characterization of Chebyshev Numbers
title_short Characterization of Chebyshev Numbers
title_full Characterization of Chebyshev Numbers
title_fullStr Characterization of Chebyshev Numbers
title_full_unstemmed Characterization of Chebyshev Numbers
title_sort characterization of chebyshev numbers
publisher Інститут прикладної математики і механіки НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/152391
citation_txt Characterization of Chebyshev Numbers / D.P. Jacobs, V. Trevisan, M.O. Rayers // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 65–82. — Бібліогр.: 17 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT jacobsdp characterizationofchebyshevnumbers
AT trevisanv characterizationofchebyshevnumbers
AT rayersmo characterizationofchebyshevnumbers
first_indexed 2023-05-20T17:38:16Z
last_indexed 2023-05-20T17:38:16Z
_version_ 1796153744915693568