2025-02-23T10:14:41-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-152391%22&qt=morelikethis&rows=5
2025-02-23T10:14:41-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-152391%22&qt=morelikethis&rows=5
2025-02-23T10:14:41-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T10:14:41-05:00 DEBUG: Deserialized SOLR response
Characterization of Chebyshev Numbers
Let Tn(x) be the degree-n Chebyshev polynomial of the first kind. It is known [1,13] that Tp(x)≡xpmodp, when p is an odd prime, and therefore, Tp(a)≡amodp for all a. Our main result is the characterization of composite numbers n satisfying the condition Tn(a)≡amodn, for any integer a. We call these...
Saved in:
Main Authors: | Jacobs, D.P., Trevisan, V., Rayers, M.O. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2008
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/152391 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T10:14:41-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-152391%22&qt=morelikethis
2025-02-23T10:14:41-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-152391%22&qt=morelikethis
2025-02-23T10:14:41-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T10:14:41-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Characterization of Chebyshev Numbers
by: Jacobs, David Pokrass, et al.
Published: (2018) -
Polynomials related to the Chebyshev polynomials
by: M. A. Sukhorolskyi, et al.
Published: (2017) -
Genetic algorithms for Chebyshev approximation
by: L. P. Vakal
Published: (2013) -
Chebyshev approximation of functions of several variables
by: P. S. Malachivskyi, et al.
Published: (2020) -
Derivations and identities for the Chebyshev polynomials
by: L. P. Bedratiuk, et al.
Published: (2021)