Surface plasmon resonance investigation of DNA hybridization on a sensor surface using gold nanoparticles modified by specific oligonucleotides

Aim. To investigate an influence of the oligonucleotide concentration on their immobilization on the surface of gold nanoparticles (AuNPs), and to study interactions between the AuNPs modified by various oligonucleotides and the oligonucleotides immobilized on the chip of the SPR-based DNA-sensor. M...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Matsishin, M.J., Kucherov, A.I., Ushenin, Iu.V., Lyapin, A.M., Lopatynskyi, A.M., Chegel, V.I., Rachkov, A.E.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2017
Назва видання:Вiopolymers and Cell
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152982
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Surface plasmon resonance investigation of DNA hybridization on a sensor surface using gold nanoparticles modified by specific oligonucleotides / M.J. Matsishin, A.I. Kucherov, Iu.V. Ushenin, A.M. Lyapin, A.M. Lopatynskyi, V.I. Chegel, A.E. Rachkov // Вiopolymers and Cell. — 2017. — Т. 33, № 4. — С. 268-281. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Aim. To investigate an influence of the oligonucleotide concentration on their immobilization on the surface of gold nanoparticles (AuNPs), and to study interactions between the AuNPs modified by various oligonucleotides and the oligonucleotides immobilized on the chip of the SPR-based DNA-sensor. Methods. Oligonucleotide immobilization on the surface of AuNPs was investigated by fluorescence spectrometry. The interactions of citrate-stabilized AuNPs modified by oligonucleotides with the oligonucleotides immobilized on the chip of the DNA-sensor were studied by the surface plasmon resonance spectrometry. Results. The initial oligonucleotide concentration influences the level of their immobilization on the surface of citrate-stabilized AuNPs: up to 200 nM the dependence was close to linear, and then saturation was observed at ~ 26 molecules per particle or ~ 0.5×10¹³ molecules cm⁻². In contrast, the efficiency of immobilization gradually decreased with an increase in the initial oligonucleotide concentration. Using the SPR-based DNA-sensor, the efficient hybridization between oligonucleotides immobilized on the sensor chip and complementary oligonucleotides of various length (short T2-11m and long T2-18m) immobilized on the surface of AuNPs was demonstrated. In case of AuNPs modified by short oligonucleotides, efficient thermal and chemical regenerations of the bioselective element of the DNA-sensor were achieved. Conclusions. Oligonucleotide immobilization on the surface of AuNPs directly depends on the initial oligonucleotide concentration, whereas the initial oligonucleotide concentration and the efficiency of their immobilization on the surface of AuNPs demonstrate the inverse relationship. The efficient hybridization of the oligonucleotides of various lengths immobilized on AuNPs with the oligonucleotides immobilized on the sensor surface as well as the possibility of thermal or chemical regeneration allow the sensor reuse and a strong amplification of the sensor signal.