On action of outer derivations on nilpotent ideals of Lie algebras
Action of outer derivations on nilpotent ideals of Lie algebras are considered. It is shown that for a nilpotent ideal I of a Lie algebra L over a field F the ideal I+D(I) is nilpotent, provided that charF=0 or I nilpotent of nilpotency class less than p−1, where p=charF. In particular, the sum N(...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2009
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/153383 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On action of outer derivations on nilpotent ideals of Lie algebras / D.V. Maksimenko // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 74–82. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-153383 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1533832019-06-15T01:26:20Z On action of outer derivations on nilpotent ideals of Lie algebras Maksimenko, D.V. Action of outer derivations on nilpotent ideals of Lie algebras are considered. It is shown that for a nilpotent ideal I of a Lie algebra L over a field F the ideal I+D(I) is nilpotent, provided that charF=0 or I nilpotent of nilpotency class less than p−1, where p=charF. In particular, the sum N(L) of all nilpotent ideals of a Lie algebra L is a characteristic ideal, if charF=0 or N(L) is nilpotent of class less than p−1, where p=charF. 2009 Article On action of outer derivations on nilpotent ideals of Lie algebras / D.V. Maksimenko // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 74–82. — Бібліогр.: 6 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 17B40. http://dspace.nbuv.gov.ua/handle/123456789/153383 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Action of outer derivations on nilpotent ideals of Lie algebras are considered. It is shown that for a nilpotent ideal I of a Lie algebra L over a field F the ideal I+D(I) is nilpotent, provided that charF=0 or I nilpotent of nilpotency class less than p−1, where p=charF. In particular, the sum N(L) of all nilpotent ideals of a Lie algebra L is a characteristic ideal, if charF=0 or N(L) is nilpotent of class less than p−1, where p=charF. |
format |
Article |
author |
Maksimenko, D.V. |
spellingShingle |
Maksimenko, D.V. On action of outer derivations on nilpotent ideals of Lie algebras Algebra and Discrete Mathematics |
author_facet |
Maksimenko, D.V. |
author_sort |
Maksimenko, D.V. |
title |
On action of outer derivations on nilpotent ideals of Lie algebras |
title_short |
On action of outer derivations on nilpotent ideals of Lie algebras |
title_full |
On action of outer derivations on nilpotent ideals of Lie algebras |
title_fullStr |
On action of outer derivations on nilpotent ideals of Lie algebras |
title_full_unstemmed |
On action of outer derivations on nilpotent ideals of Lie algebras |
title_sort |
on action of outer derivations on nilpotent ideals of lie algebras |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/153383 |
citation_txt |
On action of outer derivations on nilpotent ideals of Lie algebras / D.V. Maksimenko // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 74–82. — Бібліогр.: 6 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT maksimenkodv onactionofouterderivationsonnilpotentidealsofliealgebras |
first_indexed |
2023-05-20T17:38:49Z |
last_indexed |
2023-05-20T17:38:49Z |
_version_ |
1796153770515628032 |