Modeling the intermixing effects in highly strained asymmetric InGaAs/GaAs quantum well

In this work, we have theoretically investigated the intermixing effect in highly strained In₀.₃Ga₀.₇As/GaAs QW taking into consideration the composition profile change resulting from in-situ indium surface segregation. To study the impact of the segregation effects on the postgrowth intermixing, on...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Souaf, M., Baira, M., Maaref, H., Ilahi, B.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2015
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154203
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Modeling the intermixing effects in highly strained asymmetric InGaAs/GaAs quantum well / M. Souaf, M. Baira, H. Maaref, B. Ilahi // Condensed Matter Physics. — 2015. — Т. 18, № 3. — С. 33005: 1–6. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this work, we have theoretically investigated the intermixing effect in highly strained In₀.₃Ga₀.₇As/GaAs QW taking into consideration the composition profile change resulting from in-situ indium surface segregation. To study the impact of the segregation effects on the postgrowth intermixing, one dimensional steady state Schrodinger equation and Fick's second law of diffusion have been numerically solved by using the finite difference methods. The impact of the In/Ga interdiffusion on the QW emission energy is considered for different In segregation coefficient. Our results show that the intermixed QW emission energy is strongly dependent on the segregation effects. The interdiffusion enhanced energy shift is found to be considerably reduced for higher segregation coefficients. This work adds considerable insight into the understanding and modeling of the effects of interdiffusion in semiconductor nanostructures.