Одно свойство частных производных
Доказано, что если в каждой точке одна из слабых частных производных D₁f и D₂f отображения f:X×Y→V обращается в нуль, то либо D₁f либо D₂f — тождественный нуль. Здесь X,Y — действительные топологические векторные пространства, V — действительное отделимое локально-выпуклое пространство. Производные...
Збережено в:
Дата: | 1987 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
1987
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154350 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Одно свойство частных производных / В.К. Маслюченко // Український математичний журнал. — 1987. — Т. 39, № 4. — С. 529–531. — Бібліогр.: 1 назв. — рос. |