Partitions of groups and matroids into independent subsets
Can the set R∖{0} be covered by countably many linearly (algebraically) independent subsets over the field Q? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation.
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2010
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154609 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Partitions of groups and matroids into independent subsets / T. Banakh, I. Protasov // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 1–7. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154609 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1546092019-06-16T01:30:51Z Partitions of groups and matroids into independent subsets Banakh, T. Protasov, I. Can the set R∖{0} be covered by countably many linearly (algebraically) independent subsets over the field Q? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation. 2010 Article Partitions of groups and matroids into independent subsets / T. Banakh, I. Protasov // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 1–7. — Бібліогр.: 4 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:05B35, 05A18. http://dspace.nbuv.gov.ua/handle/123456789/154609 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Can the set R∖{0} be covered by countably many linearly (algebraically) independent subsets over the field Q? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation. |
format |
Article |
author |
Banakh, T. Protasov, I. |
spellingShingle |
Banakh, T. Protasov, I. Partitions of groups and matroids into independent subsets Algebra and Discrete Mathematics |
author_facet |
Banakh, T. Protasov, I. |
author_sort |
Banakh, T. |
title |
Partitions of groups and matroids into independent subsets |
title_short |
Partitions of groups and matroids into independent subsets |
title_full |
Partitions of groups and matroids into independent subsets |
title_fullStr |
Partitions of groups and matroids into independent subsets |
title_full_unstemmed |
Partitions of groups and matroids into independent subsets |
title_sort |
partitions of groups and matroids into independent subsets |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154609 |
citation_txt |
Partitions of groups and matroids into independent subsets / T. Banakh, I. Protasov // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 1–7. — Бібліогр.: 4 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT banakht partitionsofgroupsandmatroidsintoindependentsubsets AT protasovi partitionsofgroupsandmatroidsintoindependentsubsets |
first_indexed |
2023-05-20T17:44:58Z |
last_indexed |
2023-05-20T17:44:58Z |
_version_ |
1796154000080371712 |