Partitions of groups and matroids into independent subsets

Can the set R∖{0} be covered by countably many linearly (algebraically) independent subsets over the field Q? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation.

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Banakh, T., Protasov, I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2010
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154609
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Partitions of groups and matroids into independent subsets / T. Banakh, I. Protasov // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 1–7. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154609
record_format dspace
spelling irk-123456789-1546092019-06-16T01:30:51Z Partitions of groups and matroids into independent subsets Banakh, T. Protasov, I. Can the set R∖{0} be covered by countably many linearly (algebraically) independent subsets over the field Q? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation. 2010 Article Partitions of groups and matroids into independent subsets / T. Banakh, I. Protasov // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 1–7. — Бібліогр.: 4 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:05B35, 05A18. http://dspace.nbuv.gov.ua/handle/123456789/154609 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Can the set R∖{0} be covered by countably many linearly (algebraically) independent subsets over the field Q? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation.
format Article
author Banakh, T.
Protasov, I.
spellingShingle Banakh, T.
Protasov, I.
Partitions of groups and matroids into independent subsets
Algebra and Discrete Mathematics
author_facet Banakh, T.
Protasov, I.
author_sort Banakh, T.
title Partitions of groups and matroids into independent subsets
title_short Partitions of groups and matroids into independent subsets
title_full Partitions of groups and matroids into independent subsets
title_fullStr Partitions of groups and matroids into independent subsets
title_full_unstemmed Partitions of groups and matroids into independent subsets
title_sort partitions of groups and matroids into independent subsets
publisher Інститут прикладної математики і механіки НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/154609
citation_txt Partitions of groups and matroids into independent subsets / T. Banakh, I. Protasov // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 1–7. — Бібліогр.: 4 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT banakht partitionsofgroupsandmatroidsintoindependentsubsets
AT protasovi partitionsofgroupsandmatroidsintoindependentsubsets
first_indexed 2023-05-20T17:44:58Z
last_indexed 2023-05-20T17:44:58Z
_version_ 1796154000080371712