Partitions of groups and matroids into independent subsets
Can the set R∖{0} be covered by countably many linearly (algebraically) independent subsets over the field Q? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation.
Збережено в:
Дата: | 2010 |
---|---|
Автори: | Banakh, T., Protasov, I. |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2010
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154609 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Partitions of groups and matroids into independent subsets / T. Banakh, I. Protasov // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 1–7. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineСхожі ресурси
Prethick subsets in partitions of groups
за авторством: I. V. Protasov, та інші
Опубліковано: (2012)
за авторством: I. V. Protasov, та інші
Опубліковано: (2012)
Prethick subsets in partitions of groups
за авторством: Protasov, I.V., та інші
Опубліковано: (2012)
за авторством: Protasov, I.V., та інші
Опубліковано: (2012)
Схожі ресурси
-
Partitions of groups and matroids into independent subsets
за авторством: Banakh, Taras, та інші
Опубліковано: (2018) -
Partitions of groups into sparse subsets
за авторством: I. Protasov
Опубліковано: (2012) -
Partitions of groups into sparse subsets
за авторством: Protasov, I.
Опубліковано: (2012) -
Partitions of groups into thin subsets
за авторством: Protasov, I.
Опубліковано: (2011) -
Prethick subsets in partitions of groups
за авторством: I. V. Protasov, та інші
Опубліковано: (2012)