Uniform ball structures

A ball structure is a triple B = (X, P, B), where X, P are nonempty sets and, for all x ∈ X, α ∈ P, B(x, α) is a subset of X, x ∈ B(x, α), which is called a ball of radius α around x. We introduce the class of uniform ball structures as an asymptotic counterpart of the class of uniform topologica...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автор: Protasov, I.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2003
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155282
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Uniform ball structures / I.V. Protasov // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 93–102. — Бібліогр.: 2 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-155282
record_format dspace
spelling irk-123456789-1552822019-06-17T01:30:36Z Uniform ball structures Protasov, I.V. A ball structure is a triple B = (X, P, B), where X, P are nonempty sets and, for all x ∈ X, α ∈ P, B(x, α) is a subset of X, x ∈ B(x, α), which is called a ball of radius α around x. We introduce the class of uniform ball structures as an asymptotic counterpart of the class of uniform topological spaces. We show that every uniform ball structure can be approximated by metrizable ball structures. We also define two types of ball structures closed to being metrizable, and describe the extremal elements in the classes of ball structures with fixed support X. 2003 Article Uniform ball structures / I.V. Protasov // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 93–102. — Бібліогр.: 2 назв. — англ. 1726-3255 2001 Mathematics Subject Classification: 03E99, 54A05, 54E15. http://dspace.nbuv.gov.ua/handle/123456789/155282 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A ball structure is a triple B = (X, P, B), where X, P are nonempty sets and, for all x ∈ X, α ∈ P, B(x, α) is a subset of X, x ∈ B(x, α), which is called a ball of radius α around x. We introduce the class of uniform ball structures as an asymptotic counterpart of the class of uniform topological spaces. We show that every uniform ball structure can be approximated by metrizable ball structures. We also define two types of ball structures closed to being metrizable, and describe the extremal elements in the classes of ball structures with fixed support X.
format Article
author Protasov, I.V.
spellingShingle Protasov, I.V.
Uniform ball structures
Algebra and Discrete Mathematics
author_facet Protasov, I.V.
author_sort Protasov, I.V.
title Uniform ball structures
title_short Uniform ball structures
title_full Uniform ball structures
title_fullStr Uniform ball structures
title_full_unstemmed Uniform ball structures
title_sort uniform ball structures
publisher Інститут прикладної математики і механіки НАН України
publishDate 2003
url http://dspace.nbuv.gov.ua/handle/123456789/155282
citation_txt Uniform ball structures / I.V. Protasov // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 93–102. — Бібліогр.: 2 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT protasoviv uniformballstructures
first_indexed 2023-05-20T17:45:41Z
last_indexed 2023-05-20T17:45:41Z
_version_ 1796154015747145728