Structural properties of extremal asymmetric colorings

Let Ω be a space with probability measure µ for which the notion of symmetry is defined. Given A ⊆ Ω, let ms(A) denote the supremum of µ(B) over symmetric B ⊆ A. An r-coloring of Ω is a measurable map χ : Ω → {1, . . . , r} possibly undefined on a set of measure 0. Given an r-coloring χ, let ms(Ω; χ...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автор: Verbitsky, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2003
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155696
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Structural properties of extremal asymmetric colorings / O. Verbitsky // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 4. — С. 92–117. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-155696
record_format dspace
spelling irk-123456789-1556962019-06-18T01:28:44Z Structural properties of extremal asymmetric colorings Verbitsky, O. Let Ω be a space with probability measure µ for which the notion of symmetry is defined. Given A ⊆ Ω, let ms(A) denote the supremum of µ(B) over symmetric B ⊆ A. An r-coloring of Ω is a measurable map χ : Ω → {1, . . . , r} possibly undefined on a set of measure 0. Given an r-coloring χ, let ms(Ω; χ) = max₁≤i≤r ms(χ⁻¹ (i)). With each space Ω we associate a Ramsey type number ms(Ω, r) = infχ ms(Ω; χ). We call a coloring χ congruent if the monochromatic classes χ⁻¹ (1), . . . , χ⁻¹ (r) are pairwise congruent, i.e., can be mapped onto each other by a symmetry of Ω. We define ms* (Ω, r) to be the infimum of ms(Ω; χ) over congruent χ. We prove that ms(S¹ , r) = ms* ([0, 1), r) for the unitary interval of reals considered with central symmetry, and explore some other regularity properties of extremal colorings for various spaces. 2003 Article Structural properties of extremal asymmetric colorings / O. Verbitsky // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 4. — С. 92–117. — Бібліогр.: 12 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 05D10. http://dspace.nbuv.gov.ua/handle/123456789/155696 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let Ω be a space with probability measure µ for which the notion of symmetry is defined. Given A ⊆ Ω, let ms(A) denote the supremum of µ(B) over symmetric B ⊆ A. An r-coloring of Ω is a measurable map χ : Ω → {1, . . . , r} possibly undefined on a set of measure 0. Given an r-coloring χ, let ms(Ω; χ) = max₁≤i≤r ms(χ⁻¹ (i)). With each space Ω we associate a Ramsey type number ms(Ω, r) = infχ ms(Ω; χ). We call a coloring χ congruent if the monochromatic classes χ⁻¹ (1), . . . , χ⁻¹ (r) are pairwise congruent, i.e., can be mapped onto each other by a symmetry of Ω. We define ms* (Ω, r) to be the infimum of ms(Ω; χ) over congruent χ. We prove that ms(S¹ , r) = ms* ([0, 1), r) for the unitary interval of reals considered with central symmetry, and explore some other regularity properties of extremal colorings for various spaces.
format Article
author Verbitsky, O.
spellingShingle Verbitsky, O.
Structural properties of extremal asymmetric colorings
Algebra and Discrete Mathematics
author_facet Verbitsky, O.
author_sort Verbitsky, O.
title Structural properties of extremal asymmetric colorings
title_short Structural properties of extremal asymmetric colorings
title_full Structural properties of extremal asymmetric colorings
title_fullStr Structural properties of extremal asymmetric colorings
title_full_unstemmed Structural properties of extremal asymmetric colorings
title_sort structural properties of extremal asymmetric colorings
publisher Інститут прикладної математики і механіки НАН України
publishDate 2003
url http://dspace.nbuv.gov.ua/handle/123456789/155696
citation_txt Structural properties of extremal asymmetric colorings / O. Verbitsky // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 4. — С. 92–117. — Бібліогр.: 12 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT verbitskyo structuralpropertiesofextremalasymmetriccolorings
first_indexed 2023-05-20T17:47:04Z
last_indexed 2023-05-20T17:47:04Z
_version_ 1796154077442211840