2025-02-22T16:34:42-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156962%22&qt=morelikethis&rows=5
2025-02-22T16:34:42-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-156962%22&qt=morelikethis&rows=5
2025-02-22T16:34:42-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T16:34:42-05:00 DEBUG: Deserialized SOLR response
О неравенствах для норм промежуточных производных на конечном интервале
For functionsf which have an absolute continuous (n−1)th derivative on the interval [0, 1], it is proved that, in the case ofn>4, the inequality ‖‖f(n−2)‖‖∞⩽4n−2(n−1)!‖f‖∞+‖‖f(n)‖‖∞/2 holds with the exact constant 4 n−2(n−1)!.
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Інститут математики НАН України
1995
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/156962 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|