Kinetics of crystals growth under electron-beam crystallization of amorphous films of hafnium dioxide
Amorphous films of HfO₂ are prepared by laser ablation of Hf target in an oxygen atmosphere. Its crystallization was performed under the electron beam impact in a column of electron microscope. Formation and growth of HfO₂ crystals are investigated in situ. The transformation kinetic curves are plot...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
НТК «Інститут монокристалів» НАН України
2018
|
Назва видання: | Functional Materials |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157169 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Kinetics of crystals growth under electron-beam crystallization of amorphous films of hafnium dioxide / A.G. Bagmut, I.A. Bagmut // Functional Materials. — 2018. — Т. 25, № 3. — С. 525-533. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157169 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1571692019-06-20T01:27:12Z Kinetics of crystals growth under electron-beam crystallization of amorphous films of hafnium dioxide Bagmut, A.G. Bagmut, I.A. Characterization and properties Amorphous films of HfO₂ are prepared by laser ablation of Hf target in an oxygen atmosphere. Its crystallization was performed under the electron beam impact in a column of electron microscope. Formation and growth of HfO₂ crystals are investigated in situ. The transformation kinetic curves are plotted on the basis of a frame-by-frame analysis of the video recorded flick during the film crystallization. According to the structural and morphological features, the phase transformation corresponds to the dendrite polymorph crystallization and can be either single-stage or two-stage in nature. In the latter case, the size-phase effect takes place, consisting in the fact, that when the crystal of orthorhombic modification of HfO₂ reaches a critical size (~0.2 μm), it splits into domains with orthorhombic and monoclinic crystal lattices. The kinetic parameters of the crystallization are determined and it is shown, that the quadratic dependence of the fraction of the crystalline phase on time takes place. The average value of the relative length for the dendrite polymorphic crystallization is about 3075. The phase transition from the amorphous state to the crystalline one is accompanied by increasing of the relative density of matter of the film by about 2.5 %. The crystallized film consists predominantly of dendrites of the monoclinic modification of HfO₂. 2018 Article Kinetics of crystals growth under electron-beam crystallization of amorphous films of hafnium dioxide / A.G. Bagmut, I.A. Bagmut // Functional Materials. — 2018. — Т. 25, № 3. — С. 525-533. — Бібліогр.: 20 назв. — англ. 1027-5495 DOI:https://doi.org/10.15407/fm25.03.525 http://dspace.nbuv.gov.ua/handle/123456789/157169 en Functional Materials НТК «Інститут монокристалів» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Characterization and properties Characterization and properties |
spellingShingle |
Characterization and properties Characterization and properties Bagmut, A.G. Bagmut, I.A. Kinetics of crystals growth under electron-beam crystallization of amorphous films of hafnium dioxide Functional Materials |
description |
Amorphous films of HfO₂ are prepared by laser ablation of Hf target in an oxygen atmosphere. Its crystallization was performed under the electron beam impact in a column of electron microscope. Formation and growth of HfO₂ crystals are investigated in situ. The transformation kinetic curves are plotted on the basis of a frame-by-frame analysis of the video recorded flick during the film crystallization. According to the structural and morphological features, the phase transformation corresponds to the dendrite polymorph crystallization and can be either single-stage or two-stage in nature. In the latter case, the size-phase effect takes place, consisting in the fact, that when the crystal of orthorhombic modification of HfO₂ reaches a critical size (~0.2 μm), it splits into domains with orthorhombic and monoclinic crystal lattices. The kinetic parameters of the crystallization are determined and it is shown, that the quadratic dependence of the fraction of the crystalline phase on time takes place. The average value of the relative length for the dendrite polymorphic crystallization is about 3075. The phase transition from the amorphous state to the crystalline one is accompanied by increasing of the relative density of matter of the film by about 2.5 %. The crystallized film consists predominantly of dendrites of the monoclinic modification of HfO₂. |
format |
Article |
author |
Bagmut, A.G. Bagmut, I.A. |
author_facet |
Bagmut, A.G. Bagmut, I.A. |
author_sort |
Bagmut, A.G. |
title |
Kinetics of crystals growth under electron-beam crystallization of amorphous films of hafnium dioxide |
title_short |
Kinetics of crystals growth under electron-beam crystallization of amorphous films of hafnium dioxide |
title_full |
Kinetics of crystals growth under electron-beam crystallization of amorphous films of hafnium dioxide |
title_fullStr |
Kinetics of crystals growth under electron-beam crystallization of amorphous films of hafnium dioxide |
title_full_unstemmed |
Kinetics of crystals growth under electron-beam crystallization of amorphous films of hafnium dioxide |
title_sort |
kinetics of crystals growth under electron-beam crystallization of amorphous films of hafnium dioxide |
publisher |
НТК «Інститут монокристалів» НАН України |
publishDate |
2018 |
topic_facet |
Characterization and properties |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157169 |
citation_txt |
Kinetics of crystals growth under electron-beam crystallization of amorphous films of hafnium dioxide / A.G. Bagmut, I.A. Bagmut // Functional Materials. — 2018. — Т. 25, № 3. — С. 525-533. — Бібліогр.: 20 назв. — англ. |
series |
Functional Materials |
work_keys_str_mv |
AT bagmutag kineticsofcrystalsgrowthunderelectronbeamcrystallizationofamorphousfilmsofhafniumdioxide AT bagmutia kineticsofcrystalsgrowthunderelectronbeamcrystallizationofamorphousfilmsofhafniumdioxide |
first_indexed |
2023-05-20T17:51:37Z |
last_indexed |
2023-05-20T17:51:37Z |
_version_ |
1796154256312500224 |