Нові узагальнення теореми Скорца-Драгоні
Показано, що кожна функція Каратеодорі f:T×X→Y —де Т — топологічний простір з регулярною σ-скінченною мірою, простори X і Y — метризовні і сепарабельні, X — локально компактний, має властивість Скорца-Драгоні. Аналогічний результат одержано, коли простір T — локально компактний і X=R∞...
Збережено в:
Дата: | 2000 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут математики НАН України
2000
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157913 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Нові узагальнення теореми Скорца-Драгоні / О.І. Гайдукевич, В.К. Маслюченко // Український математичний журнал. — 2000. — Т. 52, № 7. — С. 881–888. — Бібліогр.: 14 назв. — укр. |