Bicomplex number and tensor product surfaces in R⁴₂
We show that a hyperquadric M in R⁴₂ is a Lie group by using the bicomplex number product. For our purpose, we change the definition of tensor product. We define a new tensor product by considering the tensor product surface in the hyperquadric M. By using this new tensor product, we classify totall...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164151 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Bicomplex number and tensor product surfaces in R⁴₂/ S.Ö. Karakuş, Y. Yayli // Український математичний журнал. — 2012. — Т. 64, № 3. — С. 307-317. — Бібліогр.: 13 назв. — англ. |