Про закон повторного логарифма для зважених сум незалежних випадкових величин у банаховому просторі

Нехай (Xn) — незалежні випадкові величини в банаховому просторі, (bn) — послідовність дійсних чисел, Sn=∑₁ⁿbᵢXᵢ, i Bn=∑₁ⁿbᵢ². При моментних обмеженнях на величини Xn знайдені умови на ріст послідовності (bn), достатні для обмеженості й передкомпактності послідовності (Sn/BnlnlnBn)½) майже напевно....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1993
Автори: Мацак, І.К., Плічко, А.М.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут математики НАН України 1993
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164588
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Про закон повторного логарифма для зважених сум незалежних випадкових величин у банаховому просторі / І.К. Мацак, А.М. Плічко // Український математичний журнал. — 1993. — Т. 45, № 9. — С. 1225–1231. — Бібліогр.: 17 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine